Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1988 Jun;81(6):1829-35.
doi: 10.1172/JCI113527.

Modulation of the in vitro candidacidal activity of human neutrophil defensins by target cell metabolism and divalent cations

Affiliations
Comparative Study

Modulation of the in vitro candidacidal activity of human neutrophil defensins by target cell metabolism and divalent cations

R I Lehrer et al. J Clin Invest. 1988 Jun.

Abstract

We tested the in vitro susceptibility of Candida albicans to three defensins from human neutrophilic granulocytes (HNP-1, 2, and 3), a homologous defensin from rabbit leukocytes (NP-1), and four unrelated cationic peptides. Although the primary amino acid sequences of HNP-1, 2, and 3 are identical except for a single amino-terminal amino acid alteration, HNP-1 and HNP-2 killed C. albicans but HNP-3 did not. C. albicans blastoconidia were protected from HNP-1 when incubations were performed in the absence of oxygen or in the presence of inhibitors that blocked both of its mitochondrial respiratory pathways. Neither anaerobiosis nor mitochondrial inhibitors substantially protected C. albicans exposed to NP-1, poly-L-arginine, poly-L-lysine, or mellitin. Human neutrophilic granulocyte defensin-mediated candidacidal activity was inhibited by both Mg2+ and Ca2+, and was unaffected by Fe2+. In contrast, Fe2+ inhibited the candidacidal activity of NP-1 and all of the model cationic peptides, whereas Mg2+ inhibited none of them. These data demonstrate that susceptibility of C. albicans to human defensins depends both on the ionic environment and on the metabolic state of the target cell. The latter finding suggests that leukocyte-mediated microbicidal mechanisms may manifest oxygen dependence for reasons unrelated to the production of reactive oxygen intermediates by the leukocyte.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Nature. 1970 Aug 22;227(5260):849-51 - PubMed
    1. J Clin Invest. 1985 Oct;76(4):1436-9 - PubMed
    1. J Biol Chem. 1985 Apr 25;260(8):4579-84 - PubMed
    1. Indian J Biochem Biophys. 1985 Feb;22(1):1-7 - PubMed
    1. Infect Immun. 1984 Jul;45(1):150-4 - PubMed

Publication types

MeSH terms