Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Sep 9;15(9):e0238118.
doi: 10.1371/journal.pone.0238118. eCollection 2020.

Prescriptive analytics for reducing 30-day hospital readmissions after general surgery

Affiliations

Prescriptive analytics for reducing 30-day hospital readmissions after general surgery

Dimitris Bertsimas et al. PLoS One. .

Abstract

Introduction: New financial incentives, such as reduced Medicare reimbursements, have led hospitals to closely monitor their readmission rates and initiate efforts aimed at reducing them. In this context, many surgical departments participate in the American College of Surgeons National Surgical Quality Improvement Program (NSQIP), which collects detailed demographic, laboratory, clinical, procedure and perioperative occurrence data. The availability of such data enables the development of data science methods which predict readmissions and, as done in this paper, offer specific recommendations aimed at preventing readmissions.

Materials and methods: This study leverages NSQIP data for 722,101 surgeries to develop predictive and prescriptive models, predicting readmissions and offering real-time, personalized treatment recommendations for surgical patients during their hospital stay, aimed at reducing the risk of a 30-day readmission. We applied a variety of classification methods to predict 30-day readmissions and developed two prescriptive methods to recommend pre-operative blood transfusions to increase the patient's hematocrit with the objective of preventing readmissions. The effect of these interventions was evaluated using several predictive models.

Results: Predictions of 30-day readmissions based on the entire collection of NSQIP variables achieve an out-of-sample accuracy of 87% (Area Under the Curve-AUC). Predictions based only on pre-operative variables have an accuracy of 74% AUC, out-of-sample. Personalized interventions, in the form of pre-operative blood transfusions identified by the prescriptive methods, reduce readmissions by 12%, on average, for patients considered as candidates for pre-operative transfusion (pre-operative hematoctic <30). The prediction accuracy of the proposed models exceeds results in the literature.

Conclusions: This study is among the first to develop a methodology for making specific, data-driven, personalized treatment recommendations to reduce the 30-day readmission rate. The reported predicted reduction in readmissions can lead to more than $20 million in savings in the U.S. annually.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. An instance of an Optimal Prescriptive Tree.

Similar articles

Cited by

References

    1. Squires D, Anderson C. US health care from a global perspective: spending, use of services, prices, and health in 13 countries. Issue Brief Commonw Fund. 2015;15: 1–15. - PubMed
    1. James J, others. Medicare hospital readmissions reduction program. Health Aff (Millwood). 2013;34: 1–5.
    1. Readmissions Reduction Program. Centers for Medicare and Medicaid Services; 2012. Available: http://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/AcuteInpati...
    1. Gonzalez AA, Cruz CG, Dev S, Osborne NH. Indication for Lower Extremity Revascularization and Hospital Profiling of Readmissions. Ann Vasc Surg. 2016;35: 130–137. 10.1016/j.avsg.2016.01.054 - DOI - PMC - PubMed
    1. Tosoian JJ, Hicks CW, Cameron JL, Valero V, Eckhauser FE, Hirose K, et al. Tracking early readmission after pancreatectomy to index and nonindex institutions: a more accurate assessment of readmission. JAMA Surg. 2015;150: 152–158. 10.1001/jamasurg.2014.2346 - DOI - PMC - PubMed

Publication types