A Series of Tubes: The C. elegans Excretory Canal Cell as a Model for Tubule Development
- PMID: 32906663
- PMCID: PMC7557474
- DOI: 10.3390/jdb8030017
A Series of Tubes: The C. elegans Excretory Canal Cell as a Model for Tubule Development
Abstract
Formation and regulation of properly sized epithelial tubes is essential for multicellular life. The excretory canal cell of C. elegans provides a powerful model for investigating the integration of the cytoskeleton, intracellular transport, and organismal physiology to regulate the developmental processes of tube extension, lumen formation, and lumen diameter regulation in a narrow single cell. Multiple studies have provided new understanding of actin and intermediate filament cytoskeletal elements, vesicle transport, and the role of vacuolar ATPase in determining tube size. Most of the genes discovered have clear homologues in humans, with implications for understanding these processes in mammalian tissues such as Schwann cells, renal tubules, and brain vasculature. The results of several new genetic screens are described that provide a host of new targets for future studies in this informative structure.
Keywords: IRG protein; apical surface; epithelial tube; exocytosis; intermediate filaments; terminal web; vacuolar ATPase; vesicle transport.
Conflict of interest statement
The authors declare no conflict of interest.
Figures




Similar articles
-
Tubular Excretory Canal Structure Depends on Intermediate Filaments EXC-2 and IFA-4 in Caenorhabditis elegans.Genetics. 2018 Oct;210(2):637-652. doi: 10.1534/genetics.118.301078. Epub 2018 Jun 26. Genetics. 2018. PMID: 29945901 Free PMC article.
-
Terminal web and vesicle trafficking proteins mediate nematode single-cell tubulogenesis.J Cell Biol. 2020 Nov 2;219(11):e202003152. doi: 10.1083/jcb.202003152. J Cell Biol. 2020. PMID: 32860501 Free PMC article.
-
Integrity of Narrow Epithelial Tubes in the C. elegans Excretory System Requires a Transient Luminal Matrix.PLoS Genet. 2016 Aug 2;12(8):e1006205. doi: 10.1371/journal.pgen.1006205. eCollection 2016 Aug. PLoS Genet. 2016. PMID: 27482894 Free PMC article.
-
Tubes and the single C. elegans excretory cell.Trends Cell Biol. 2002 Oct;12(10):479-84. doi: 10.1016/s0962-8924(02)02364-4. Trends Cell Biol. 2002. PMID: 12441252 Review.
-
Time to make the doughnuts: Building and shaping seamless tubes.Semin Cell Dev Biol. 2017 Jul;67:123-131. doi: 10.1016/j.semcdb.2016.05.006. Epub 2016 May 10. Semin Cell Dev Biol. 2017. PMID: 27178486 Free PMC article. Review.
Cited by
-
Morphologically defined substages of tail morphogenesis in C. elegans males.bioRxiv [Preprint]. 2024 Jan 15:2024.01.11.575265. doi: 10.1101/2024.01.11.575265. bioRxiv. 2024. Update in: Dev Dyn. 2024 Dec;253(12):1147-1164. doi: 10.1002/dvdy.721. PMID: 38293029 Free PMC article. Updated. Preprint.
-
Epidermal PAR-6 and PKC-3 are essential for larval development of C. elegans and organize non-centrosomal microtubules.Elife. 2020 Dec 10;9:e62067. doi: 10.7554/eLife.62067. Elife. 2020. PMID: 33300872 Free PMC article.
-
Epithelial morphogenesis, tubulogenesis and forces in organogenesis.Curr Top Dev Biol. 2021;144:161-214. doi: 10.1016/bs.ctdb.2020.12.012. Epub 2021 Feb 8. Curr Top Dev Biol. 2021. PMID: 33992152 Free PMC article. Review.
-
Molecular mechanisms of tubulogenesis revealed in the sea star hydro-vascular organ.Nat Commun. 2023 May 9;14(1):2402. doi: 10.1038/s41467-023-37947-2. Nat Commun. 2023. PMID: 37160908 Free PMC article.
-
Morphologically defined substages of tail morphogenesis in C. elegans males.Dev Dyn. 2024 Dec;253(12):1147-1164. doi: 10.1002/dvdy.721. Epub 2024 Jun 25. Dev Dyn. 2024. PMID: 38924277 Review.
References
-
- Samakovlis C., Hacohen N., Manning G., Sutherland D.C., Guillemin K., Krasnow M.A. Development of the Drosophila tracheal system occurs by a series of morphologically distinct but genetically coupled branching events. Development. 1996;122:1395–1407. - PubMed
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources