Transport properties controlled by a thermostat: An extended dissipative particle dynamics thermostat
- PMID: 32907095
- DOI: 10.1039/b713568h
Transport properties controlled by a thermostat: An extended dissipative particle dynamics thermostat
Abstract
We introduce a variation of the dissipative particle dynamics (DPD) thermostat that allows for controlling transport properties of molecular fluids. The standard DPD thermostat acts only on a relative velocity along the interatomic axis. Our extension includes the damping of the perpendicular components of the relative velocity, whilst keeping the advantages of conserving Galilei invariance and within our error bar also hydrodynamics. This leads to a second friction parameter for tuning the transport properties of the system. Numerical simulations of a simple Lennard-Jones fluid and liquid water demonstrate a very sensitive behaviour of the transport properties, e.g., viscosity, on the strength of the new friction parameter. We envisage that the new thermostat will be very useful for the coarse-grained and adaptive resolution simulations of soft matter, where the diffusion constants and viscosities of the coarse-grained models are typically too high/low, respectively, compared to all-atom simulations.
Similar articles
-
Dissipative particle dynamics for coarse-grained models.J Chem Phys. 2024 May 7;160(17):174115. doi: 10.1063/5.0197112. J Chem Phys. 2024. PMID: 38748030
-
Effective thermostat induced by coarse graining of simple point charge water.J Chem Phys. 2008 Jul 14;129(2):024106. doi: 10.1063/1.2953320. J Chem Phys. 2008. PMID: 18624515
-
A test of systematic coarse-graining of molecular dynamics simulations: Transport properties.J Chem Phys. 2013 Sep 7;139(9):094107. doi: 10.1063/1.4819472. J Chem Phys. 2013. PMID: 24028102
-
Dissipative particle dynamics simulations in colloid and Interface science: a review.Adv Colloid Interface Sci. 2021 Dec;298:102545. doi: 10.1016/j.cis.2021.102545. Epub 2021 Oct 14. Adv Colloid Interface Sci. 2021. PMID: 34757286 Review.
-
Exploring membrane and protein dynamics with dissipative particle dynamics.Adv Protein Chem Struct Biol. 2011;85:143-82. doi: 10.1016/B978-0-12-386485-7.00004-1. Adv Protein Chem Struct Biol. 2011. PMID: 21920323 Review.
Cited by
-
Concurrent coupling of atomistic simulation and mesoscopic hydrodynamics for flows over soft multi-functional surfaces.Soft Matter. 2019 Feb 20;15(8):1747-1757. doi: 10.1039/c8sm02170h. Soft Matter. 2019. PMID: 30672954 Free PMC article.
-
Dissipative Particle Dynamics Simulation of Ultrasound Propagation through Liquid Water.J Chem Theory Comput. 2022 Feb 8;18(2):1227-1240. doi: 10.1021/acs.jctc.1c01020. Epub 2022 Jan 10. J Chem Theory Comput. 2022. PMID: 35001631 Free PMC article.
-
From adaptive resolution to molecular dynamics of open systems.Eur Phys J B. 2021;94(9):189. doi: 10.1140/epjb/s10051-021-00193-w. Epub 2021 Sep 23. Eur Phys J B. 2021. PMID: 34720711 Free PMC article. Review.
-
Predicting the morphology of sickle red blood cells using coarse-grained models of intracellular aligned hemoglobin polymers.Soft Matter. 2012 Apr 28;8(16):10.1039/C2SM07294G. doi: 10.1039/C2SM07294G. Soft Matter. 2012. PMID: 24307912 Free PMC article.
-
Efficient Schmidt number scaling in dissipative particle dynamics.J Chem Phys. 2015 Dec 28;143(24):243106. doi: 10.1063/1.4930921. J Chem Phys. 2015. PMID: 26723591 Free PMC article.
LinkOut - more resources
Full Text Sources