Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jul 7;33(13):134001.
doi: 10.1088/0264-9381/33/13/134001. Epub 2016 Jun 6.

Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914

B P Abbott  1 R Abbott  1 T D Abbott  2 M R Abernathy  1 F Acernese  3   4 K Ackley  5 M Adamo  4   6 C Adams  7 T Adams  8 P Addesso  3 R X Adhikari  1 V B Adya  9 C Affeldt  9 M Agathos  10 K Agatsuma  10 N Aggarwal  11 O D Aguiar  12 L Aiello  13   14 A Ain  15 P Ajith  16 B Allen  9   17   18 A Allocca  19   20 P A Altin  21 S B Anderson  1 W G Anderson  17 K Arai  1 M C Araya  1 C C Arceneaux  6 J S Areeda  22 N Arnaud  23 K G Arun  24 S Ascenzi  25   14 G Ashton  26 M Ast  27 S M Aston  7 P Astone  28 P Aufmuth  9 C Aulbert  9 S Babak  29 P Bacon  30 M K M Bader  10 P T Baker  31 F Baldaccini  32   33 G Ballardin  34 S W Ballmer  35 J C Barayoga  1 S E Barclay  36 B C Barish  1 D Barker  37 F Barone  3   4 B Barr  36 L Barsotti  11 M Barsuglia  30 D Barta  38 J Bartlett  37 I Bartos  39 R Bassiri  40 A Basti  19   20 J C Batch  37 C Baune  9 V Bavigadda  34 M Bazzan  41   42 B Behnke  29 M Bejger  43 A S Bell  36 C J Bell  36 B K Berger  1 J Bergman  37 G Bergmann  9 C P L Berry  44 D Bersanetti  45   46 A Bertolini  10 J Betzwieser  7 S Bhagwat  35 R Bhandare  47 I A Bilenko  48 G Billingsley  1 J Birch  7 R Birney  49 S Biscans  11 A Bisht  9   18 M Bitossi  34 C Biwer  35 M A Bizouard  23 J K Blackburn  1 L Blackburn  11 C D Blair  50 D G Blair  50 R M Blair  37 S Bloemen  51 O Bock  9 T P Bodiya  11 M Boer  52 G Bogaert  52 C Bogan  9 A Bohe  29 P Bojtos  53 C Bond  44 F Bondu  54 R Bonnand  8 B A Boom  10 R Bork  1 V Boschi  19   20 S Bose  55   15 Y Bouffanais  30 A Bozzi  34 C Bradaschia  20 P R Brady  17 V B Braginsky  48 M Branchesi  56   57 J E Brau  58 T Briant  59 A Brillet  52 M Brinkmann  9 V Brisson  23 P Brockill  17 A F Brooks  1 D A Brown  35 D D Brown  44 N M Brown  11 C C Buchanan  2 A Buikema  11 T Bulik  60 H J Bulten  61   10 A Buonanno  29   62 D Buskulic  8 C Buy  30 R L Byer  40 L Cadonati  63 G Cagnoli  64   65 C Cahillane  1 J Calderón Bustillo  66   63 T Callister  1 E Calloni  67   4 J B Camp  68 K C Cannon  69 J Cao  70 C D Capano  9 E Capocasa  30 F Carbognani  34 S Caride  71 J Casanueva Diaz  23 C Casentini  25   14 S Caudill  17 M Cavaglià  6 F Cavalier  23 R Cavalieri  34 G Cella  20 C B Cepeda  1 L Cerboni Baiardi  56   57 G Cerretani  19   20 E Cesarini  25   14 R Chakraborty  1 T Chalermsongsak  1 S J Chamberlin  72 M Chan  36 S Chao  73 P Charlton  74 E Chassande-Mottin  30 S Chatterji  11 H Y Chen  75 Y Chen  76 C Cheng  73 A Chincarini  46 A Chiummo  34 H S Cho  77 M Cho  62 J H Chow  21 N Christensen  78 Q Chu  50 S Chua  59 S Chung  50 G Ciani  5 F Clara  37 J A Clark  63 F Cleva  52 E Coccia  25   13   14 P-F Cohadon  59 A Colla  79   28 C G Collette  80 L Cominsky  81 M Constancio Jr  12 A Conte  79   28 L Conti  42 D Cook  37 T R Corbitt  2 N Cornish  31 A Corsi  71 S Cortese  34 C A Costa  12 M W Coughlin  78 S B Coughlin  82 J-P Coulon  52 S T Countryman  39 P Couvares  1 E E Cowan  63 D M Coward  50 M J Cowart  7 D C Coyne  1 R Coyne  71 K Craig  36 J D E Creighton  17 J Cripe  2 S G Crowder  83 A Cumming  36 L Cunningham  36 E Cuoco  34 T Dal Canton  9 S L Danilishin  36 S D'Antonio  14 K Danzmann  18   9 N S Darman  84 V Dattilo  34 I Dave  47 H P Daveloza  85 M Davier  23 G S Davies  36 E J Daw  86 R Day  34 D DeBra  40 G Debreczeni  38 J Degallaix  65 M De Laurentis  67   4 S Deléglise  59 W Del Pozzo  44 T Denker  9   18 T Dent  9 H Dereli  52 V Dergachev  1 R T DeRosa  7 R De Rosa  67   4 R DeSalvo  87 S Dhurandhar  15 M C Díaz  85 L Di Fiore  4 M Di Giovanni  79   28 A Di Lieto  19   20 S Di Pace  79   28 I Di Palma  29   9 A Di Virgilio  20 G Dojcinoski  88 V Dolique  65 F Donovan  11 K L Dooley  6 S Doravari  7   9 R Douglas  36 T P Downes  17 M Drago  9   89   90 R W P Drever  1 J C Driggers  37 Z Du  70 M Ducrot  8 S E Dwyer  37 T B Edo  86 M C Edwards  78 A Effler  7 H-B Eggenstein  9 P Ehrens  1 J Eichholz  5 S S Eikenberry  5 W Engels  76 R C Essick  11 T Etzel  1 M Evans  11 T M Evans  7 R Everett  72 M Factourovich  39 V Fafone  25   14   13 H Fair  35 S Fairhurst  91 X Fan  70 Q Fang  50 S Farinon  46 B Farr  75 W M Farr  44 M Favata  88 M Fays  91 H Fehrmann  9 M M Fejer  40 I Ferrante  19   20 E C Ferreira  12 F Ferrini  34 F Fidecaro  19   20 I Fiori  34 D Fiorucci  30 R P Fisher  35 R Flaminio  65   92 M Fletcher  36 J-D Fournier  52 S Franco  23 S Frasca  79   28 F Frasconi  20 Z Frei  53 A Freise  44 R Frey  58 V Frey  23 T T Fricke  9 P Fritschel  11 V V Frolov  7 P Fulda  5 M Fyffe  7 H A G Gabbard  6 J R Gair  93 L Gammaitoni  32   33 S G Gaonkar  15 F Garufi  67   4 A Gatto  30 G Gaur  94   95 N Gehrels  68 G Gemme  46 B Gendre  52 E Genin  34 A Gennai  20 J George  47 L Gergely  96 V Germain  8 Archisman Ghosh  16 S Ghosh  51   10 J A Giaime  2   7 K D Giardina  7 A Giazotto  20 K Gill  97 A Glaefke  36 E Goetz  98 R Goetz  5 L Gondan  53 G González  2 J M Gonzalez Castro  19   20 A Gopakumar  99 N A Gordon  36 M L Gorodetsky  48 S E Gossan  1 M Gosselin  34 R Gouaty  8 C Graef  36 P B Graff  62 M Granata  65 A Grant  36 S Gras  11 C Gray  37 G Greco  56   57 A C Green  44 P Groot  51 H Grote  9 S Grunewald  29 G M Guidi  56   57 X Guo  70 A Gupta  15 M K Gupta  95 K E Gushwa  1 E K Gustafson  1 R Gustafson  98 J J Hacker  22 B R Hall  55 E D Hall  1 G Hammond  36 M Haney  99 M M Hanke  9 J Hanks  37 C Hanna  72 M D Hannam  91 J Hanson  7 T Hardwick  2 J Harms  56   57 G M Harry  100 I W Harry  29 M J Hart  36 M T Hartman  5 C-J Haster  44 K Haughian  36 A Heidmann  59 M C Heintze  5   7 H Heitmann  52 P Hello  23 G Hemming  34 M Hendry  36 I S Heng  36 J Hennig  36 A W Heptonstall  1 M Heurs  9   18 S Hild  36 D Hoak  101 K A Hodge  1 D Hofman  65 S E Hollitt  102 K Holt  7 D E Holz  75 P Hopkins  91 D J Hosken  102 J Hough  36 E A Houston  36 E J Howell  50 Y M Hu  36 S Huang  73 E A Huerta  103   82 D Huet  23 B Hughey  97 S Husa  66 S H Huttner  36 T Huynh-Dinh  7 A Idrisy  72 N Indik  9 D R Ingram  37 R Inta  71 H N Isa  36 J-M Isac  59 M Isi  1 G Islas  22 T Isogai  11 B R Iyer  16 K Izumi  37 T Jacqmin  59 H Jang  77 K Jani  63 P Jaranowski  104 S Jawahar  105 F Jiménez-Forteza  66 W W Johnson  2 D I Jones  26 R Jones  36 R J G Jonker  10 L Ju  50 K Haris  106 C V Kalaghatgi  24   91 V Kalogera  82 S Kandhasamy  6 G Kang  77 J B Kanner  1 S Karki  58 M Kasprzack  2   23   34 E Katsavounidis  11 W Katzman  7 S Kaufer  18 T Kaur  50 K Kawabe  37 F Kawazoe  9   18 F Kéfélian  52 M S Kehl  69 D Keitel  9   66 D B Kelley  35 W Kells  1 R Kennedy  86 J S Key  85 A Khalaidovski  9 F Y Khalili  48 I Khan  13 S Khan  91 Z Khan  95 E A Khazanov  107 N Kijbunchoo  37 C Kim  77 J Kim  108 K Kim  109 Kim Nam-Gyu  77 Namjun Kim  40 Y-M Kim  108 E J King  102 P J King  37 D L Kinzel  7 J S Kissel  37 L Kleybolte  27 S Klimenko  5 S M Koehlenbeck  9 K Kokeyama  2 S Koley  10 V Kondrashov  1 A Kontos  11 M Korobko  27 W Z Korth  1 I Kowalska  60 D B Kozak  1 V Kringel  9 B Krishnan  9 A Królak  110   111 C Krueger  18 G Kuehn  9 P Kumar  69 L Kuo  73 A Kutynia  110 B D Lackey  35 M Landry  37 J Lange  112 B Lantz  40 P D Lasky  113 A Lazzarini  1 C Lazzaro  63   42 P Leaci  29   79   28 S Leavey  36 E O Lebigot  30   70 C H Lee  108 H K Lee  109 H M Lee  114 K Lee  36 A Lenon  35 M Leonardi  89   90 J R Leong  9 N Leroy  23 N Letendre  8 Y Levin  113 B M Levine  37 T G F Li  1 A Libson  11 T B Littenberg  115 N A Lockerbie  105 J Logue  36 A L Lombardi  101 J E Lord  35 M Lorenzini  13   14 V Loriette  116 M Lormand  7 G Losurdo  57 J D Lough  9   18 H Lück  18   9 A P Lundgren  9 J Luo  78 R Lynch  11 Y Ma  50 T MacDonald  40 B Machenschalk  9 M MacInnis  11 D M Macleod  2 F Magaña-Sandoval  35 R M Magee  55 M Mageswaran  1 E Majorana  28 I Maksimovic  116 V Malvezzi  25   14 N Man  52 I Mandel  44 V Mandic  83 V Mangano  36 G L Mansell  21 M Manske  17 M Mantovani  34 F Marchesoni  117   33 F Marion  8 S Márka  39 Z Márka  39 A S Markosyan  40 E Maros  1 F Martelli  56   57 L Martellini  52 I W Martin  36 R M Martin  5 D V Martynov  1 J N Marx  1 K Mason  11 A Masserot  8 T J Massinger  35 M Masso-Reid  36 F Matichard  11 L Matone  39 N Mavalvala  11 N Mazumder  55 G Mazzolo  9 R McCarthy  37 D E McClelland  21 S McCormick  7 S C McGuire  118 G McIntyre  1 J McIver  1 D J McManus  21 S T McWilliams  103 D Meacher  72 G D Meadors  29   9 J Meidam  10 A Melatos  84 G Mendell  37 D Mendoza-Gandara  9 R A Mercer  17 E Merilh  37 M Merzougui  52 S Meshkov  1 C Messenger  36 C Messick  72 P M Meyers  83 F Mezzani  28   79 H Miao  44 C Michel  65 H Middleton  44 E E Mikhailov  119 L Milano  67   4 J Miller  11 M Millhouse  31 Y Minenkov  14 J Ming  29   9 S Mirshekari  120 C Mishra  16 S Mitra  15 V P Mitrofanov  48 G Mitselmakher  5 R Mittleman  11 A Moggi  20 M Mohan  34 S R P Mohapatra  11 M Montani  56   57 B C Moore  88 C J Moore  121 D Moraru  37 G Moreno  37 S R Morriss  85 K Mossavi  9 B Mours  8 C M Mow-Lowry  44 C L Mueller  5 G Mueller  5 A W Muir  91 Arunava Mukherjee  16 D Mukherjee  17 S Mukherjee  85 N Mukund  15 A Mullavey  7 J Munch  102 D J Murphy  39 P G Murray  36 A Mytidis  5 I Nardecchia  25   14 L Naticchioni  79   28 R K Nayak  122 V Necula  5 K Nedkova  101 G Nelemans  51   10 M Neri  45   46 A Neunzert  98 G Newton  36 T T Nguyen  21 A B Nielsen  9 S Nissanke  51   10 A Nitz  9 F Nocera  34 D Nolting  7 M E Normandin  85 L K Nuttall  35 J Oberling  37 E Ochsner  17 J O'Dell  123 E Oelker  11 G H Ogin  124 J J Oh  125 S H Oh  125 F Ohme  91 M Oliver  66 P Oppermann  9 Richard J Oram  7 B O'Reilly  7 R O'Shaughnessy  112 D J Ottaway  102 R S Ottens  5 H Overmier  7 B J Owen  71 A Pai  106 S A Pai  47 J R Palamos  58 O Palashov  107 C Palomba  28 A Pal-Singh  27 H Pan  73 C Pankow  82 F Pannarale  91 B C Pant  47 F Paoletti  34   20 A Paoli  34 M A Papa  29   17   9 H R Paris  40 W Parker  7 D Pascucci  36 A Pasqualetti  34 R Passaquieti  19   20 D Passuello  20 B Patricelli  19   20 Z Patrick  40 B L Pearlstone  36 M Pedraza  1 R Pedurand  65 L Pekowsky  35 A Pele  7 S Penn  126 A Perreca  1 M Phelps  36 O Piccinni  79   28 M Pichot  52 F Piergiovanni  56   57 V Pierro  87 G Pillant  34 L Pinard  65 I M Pinto  87 M Pitkin  36 R Poggiani  19   20 P Popolizio  34 A Post  9 J Powell  36 J Prasad  15 V Predoi  91 S S Premachandra  113 T Prestegard  83 L R Price  1 M Prijatelj  34 M Principe  87 S Privitera  29 G A Prodi  89   90 L Prokhorov  48 O Puncken  9 M Punturo  33 P Puppo  28 M Pürrer  29 H Qi  17 J Qin  50 V Quetschke  85 E A Quintero  1 R Quitzow-James  58 F J Raab  37 D S Rabeling  21 H Radkins  37 P Raffai  53 S Raja  47 M Rakhmanov  85 P Rapagnani  79   28 V Raymond  29 M Razzano  19   20 V Re  25 J Read  22 C M Reed  37 T Regimbau  52 L Rei  46 S Reid  49 D H Reitze  1   5 H Rew  119 S D Reyes  35 F Ricci  79   28 K Riles  98 N A Robertson  1   36 R Robie  36 F Robinet  23 A Rocchi  14 L Rolland  8 J G Rollins  1 V J Roma  58 R Romano  3   4 G Romanov  119 J H Romie  7 D Rosińska  127   43 S Rowan  36 A Rüdiger  9 P Ruggi  34 K Ryan  37 S Sachdev  1 T Sadecki  37 L Sadeghian  17 L Salconi  34 M Saleem  106 F Salemi  9 A Samajdar  122 L Sammut  84   113 E J Sanchez  1 V Sandberg  37 B Sandeen  82 J R Sanders  98   35 B Sassolas  65 B S Sathyaprakash  91 P R Saulson  35 O Sauter  98 R L Savage  37 A Sawadsky  18 P Schale  58 R Schilling  9 J Schmidt  9 P Schmidt  1   76 R Schnabel  27 R M S Schofield  58 A Schönbeck  27 E Schreiber  9 D Schuette  9   18 B F Schutz  91   29 J Scott  36 S M Scott  21 D Sellers  7 A S Sengupta  94 D Sentenac  34 V Sequino  25   14 A Sergeev  107 G Serna  22 Y Setyawati  51   10 A Sevigny  37 D A Shaddock  21 S Shah  51   10 M S Shahriar  82 M Shaltev  9 Z Shao  1 B Shapiro  40 P Shawhan  62 A Sheperd  17 D H Shoemaker  11 D M Shoemaker  63 K Siellez  52   63 X Siemens  17 D Sigg  37 A D Silva  12 D Simakov  9 A Singer  1 L P Singer  68 A Singh  29   9 R Singh  2 A Singhal  13 A M Sintes  66 B J J Slagmolen  21 J Slutsky  9 J R Smith  22 N D Smith  1 R J E Smith  1 E J Son  125 B Sorazu  36 F Sorrentino  46 T Souradeep  15 A K Srivastava  95 A Staley  39 M Steinke  9 J Steinlechner  36 S Steinlechner  36 D Steinmeyer  9   18 B C Stephens  17 R Stone  85 K A Strain  36 N Straniero  65 G Stratta  56   57 N A Strauss  78 S Strigin  48 R Sturani  120 A L Stuver  7 T Z Summerscales  128 L Sun  84 P J Sutton  91 B L Swinkels  34 M J Szczepańczyk  97 M Tacca  30 D Talukder  58 D B Tanner  5 M Tápai  96 S P Tarabrin  9 A Taracchini  29 R Taylor  1 T Theeg  9 M P Thirugnanasambandam  1 E G Thomas  44 M Thomas  7 P Thomas  37 K A Thorne  7 K S Thorne  76 E Thrane  113 S Tiwari  13 V Tiwari  91 K V Tokmakov  105 C Tomlinson  86 M Tonelli  19   20 C V Torres  85 C I Torrie  1 D Töyrä  44 F Travasso  32   33 G Traylor  7 D Trifirò  6 M C Tringali  89   90 L Trozzo  129   20 M Tse  11 M Turconi  52 D Tuyenbayev  85 D Ugolini  130 C S Unnikrishnan  99 A L Urban  17 S A Usman  35 H Vahlbruch  18 G Vajente  1 G Valdes  85 N van Bakel  10 M van Beuzekom  10 J F J van den Brand  61   10 C Van Den Broeck  10 D C Vander-Hyde  35   22 L van der Schaaf  10 J V van Heijningen  10 A A van Veggel  36 M Vardaro  41   42 S Vass  1 M Vasúth  38 R Vaulin  11 A Vecchio  44 G Vedovato  42 J Veitch  44 P J Veitch  102 K Venkateswara  131 D Verkindt  8 F Vetrano  56   57 A Viceré  56   57 S Vinciguerra  44 D J Vine  49 J-Y Vinet  52 S Vitale  11 T Vo  35 H Vocca  32   33 C Vorvick  37 D Voss  5 W D Vousden  44 S P Vyatchanin  48 A R Wade  21 L E Wade  132 M Wade  132 M Walker  2 L Wallace  1 S Walsh  17   9   29 G Wang  13 H Wang  44 M Wang  44 X Wang  70 Y Wang  50 R L Ward  21 J Warner  37 M Was  8 B Weaver  37 L-W Wei  52 M Weinert  9 A J Weinstein  1 R Weiss  11 T Welborn  7 L Wen  50 P Weßels  9 T Westphal  9 K Wette  9 J T Whelan  112   9 S Whitcomb  1 D J White  86 B F Whiting  5 R D Williams  1 A R Williamson  91 J L Willis  133 B Willke  18   9 M H Wimmer  9   18 W Winkler  9 C C Wipf  1 H Wittel  9   18 G Woan  36 J Worden  37 J L Wright  36 G Wu  7 J Yablon  82 W Yam  11 H Yamamoto  1 C C Yancey  62 M J Yap  21 H Yu  11 M Yvert  8 A Zadrożny  110 L Zangrando  42 M Zanolin  97 J-P Zendri  42 M Zevin  82 F Zhang  11 L Zhang  1 M Zhang  119 Y Zhang  112 C Zhao  50 M Zhou  82 Z Zhou  82 X J Zhu  50 N Zotov  134 M E Zucker  1   11 S E Zuraw  101 J Zweizig  1
Affiliations

Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914

B P Abbott et al. Class Quantum Gravity. .

Abstract

On September 14, 2015, a gravitational wave signal from a coalescing black hole binary system was observed by the Advanced LIGO detectors. This paper describes the transient noise backgrounds used to determine the significance of the event (designated GW150914) and presents the results of investigations into potential correlated or uncorrelated sources of transient noise in the detectors around the time of the event. The detectors were operating nominally at the time of GW150914. We have ruled out environmental influences and non-Gaussian instrument noise at either LIGO detector as the cause of the observed gravitational wave signal.

PubMed Disclaimer

Figures

Figure A1:
Figure A1:
The effectiveness of the veto criteria designed to flag h(t) non-stationarity due to the malfunction of the 45MHz driver over a six hour period on September 21, 2015. The top panel shows the witness channel (a monitor for amplitude fluctuations in the signal used to generate the 45 MHz optical sidebands) over a 6 hour period with non-stationary data in h(t). Due to variation in its mean value, a band limited root-mean-square (BLRMS) of this channel over 60 seconds was a better indicator of the targeted behavior, shown in the middle panel. Thresholds of this BLRMS were tested over 11 days during the analysis period for efficiency in identifying periods of high trigger rate in h(t), and the threshold shown in the middle figure was found to be optimal for the analysis time removed. The bottom panel shows Omicron h(t) triggers over the same 6 hour time period. Times removed by the veto are shaded out in gray.
Figure A2:
Figure A2:
The rate of Omicron triggers with and without vetoes applied to 11 days of data, a subset of the analysis period. The veto is effective at removing excess triggers with a SNR between 15 and 100. When applied to the full GW150914 analysis period, this data quality veto removed 42% of noise transients of an SNR of 20 or greater, at the expense of 2.6% of coincident data.
Figure B1:
Figure B1:
The physical environment monitor (PEM) array at the Livingston detector, as seen on http://pem.ligo.org [10]. Gray dashed lines enclose instrumentation in separate structures: the corner station building located at the vertex of the laser-interferometric detector, the two end stations located at the end of the 4km detector arms, and the ‘vault’, which houses PEM sensors away from all buildings to measure noise due to the external environment. Purple dashed lines indicate rooms within structures, or spaces just outside of structures. For example, the corner station and both end stations have PEM sensors in electronics rooms containing computers that sense and control the detector as well as PEM equipment mounted on a mast on the roof. See [4, 6] for detailed description of the optical layout shown.
Figure 1:
Figure 1:
The average measured strain-equivalent noise, or sensitivity, of the Advanced LIGO detectors during the time analyzed to determine the significance of GW150914 (Sept 12 - Oct 20, 2015). LIGO-Hanford (H1) is shown in red, LIGO-Livingston (L1) in blue. The solid traces represent the median sensitivity and the shaded regions indicate the 5th and 95th percentile over the analysis period. The narrowband features in the spectra are due to known mechanical resonances, mains power harmonics, and injected signals used for calibration [4, 5, 6].
Figure 2:
Figure 2:
Noise coupling example: determining magnetic field coupling for a location at LIGO-Hanford. The top panel shows the output of a magnetometer installed in the corner station (see Figure B1) during the injection of a series of single frequency oscillating magnetic fields at 6 Hz intervals (in red) and at a nominally quiet time (in blue). The middle panel shows h(f) during this test (in red) and during the same nominally quiet time (in blue). The heights of the induced peaks in h(f) can be used to determine the magnetic coupling (in m/T) at those frequencies, as shown in the bottom panel. The points in the bottom panel above 80 Hz were determined in a different test with a stronger magnetic field needed to produce discernible peaks in h(f). The green points in the middle panel are an estimate of the contribution to h(f) from the ambient magnetic noise during the nominally quiet time, calculated using the coupling function from the bottom panel. Injection tests also induced strong magnetic fields above 200 Hz. At higher frequencies, coupling was so low that the injected fields did not produce a response in h(f), but were used to set upper limits on the coupling function. This figure only shows data for one (typical) location, but similar injections were repeated at all locations where magnetic coupling might be of concern.
Figure 3:
Figure 3:
A normalized spectrogram of the LIGO-Livingston h(t) channel at the time of a blip transient. The color scale indicates excess signal energy of data normalized by an estimated power spectral density.
Figure 4:
Figure 4:
The maximum sensitivity of LIGO-Hanford (red) and LIGO-Livingston (blue) during the analyzed period (September 12 - October 20 2015) to a binary black hole system with the same observed spin and mass parameters as GW150914 for optimal sky location and source orientation and detected with an SNR of 8. Each point was calculated using the PSD as measured for each analysis segment (2048 seconds) of the CBC search. The times of events GW150914 and LVT151012 are indicated with vertical dashed and dot-dashed lines respectively. The LIGO-Livingston detector entered observation mode roughly 30 minutes prior to GW150914 after completing PEM injection tests in a stable, operational state. The LIGO-Hanford detector had been in observation mode for over an hour.
Figure 5:
Figure 5:
The rate of single interferometer background triggers in the CBC search for H1 (above) and L1 (below), where color indicates a threshold on the detection statistic, χ2-weighted SNR. Each point represents the average rate over a 2048 second interval. The times of GW150914 and LVT151012 are indicated with vertical dashed and dot-dashed lines respectively.
Figure 6:
Figure 6:
The behavior of cWB background triggers in frequency and coherent network SNR over the duration of the analysis period (right) and the frequency distribution of these triggers by week from September 12 to October 20, 2015 (left). For each time-shifted background trigger, the time for the Livingston detector is indicated. The time of GW150914, recovered with a coherent network SNR of 20, is indicated with a dashed vertical line in the right panel. (LVT151012 was not identified by cWB.) Overall, the background distribution is consistent throughout the analysis period.
Figure 7:
Figure 7:
The impact of data-quality vetoes on the CBC background trigger distribution for (a) LIGO-Hanford and (b) LIGO-Livingston. The single-detector χ2-weighted SNR of GW150914 is indicated for each detector with a dashed line (19.7 for Hanford and 13.3 for Livingston), and for event LVT151012 with a dot-dashed line (6.9 for Hanford and 6.7 for Livingston).
Figure 8:
Figure 8:
The impact of data-quality vetoes and signal consistency requirements on the background trigger distribution from the cWB search for gravitational-wave bursts by coherent network SNR. The multi-detector coherence required by cWB greatly reduces the rate of outlier events relative to the single-detector triggers shown in Figure 9. Note that the background rate is much lower than for single-interferometer triggers because it is normalized by the entire duration of the time-shifted analysis, not only the analysis period. The detected coherent network SNR of GW150914 is indicated with a dashed line. Note the background distributions shown here were selected to illustrate the effect of data quality vetoes and differ from those in Figure 4 of [1].
Figure 9:
Figure 9:
The impact of data-quality vetoes on the single-detector burst triggers detected by the Omicron burst algorithm for (a) LIGO-Hanford and (b) LIGO-Livingston. The SNR of GW150914 in each detector is indicated with a dashed line.
Figure 10:
Figure 10:
Normalized spectrograms of GW150914 in LIGO-Hanford (left) and LIGO-Livingston (right) h(t) data with the same central GPS time. The data at both detectors exhibited typically low levels of noise around the time of the event; the signal, offset by ~7 ms between detectors, was recovered by a matched-filter CBC search with a combined detector signal-to-noise ratio of 24 [1, 2], by the coherent burst search with a coherent network SNR of 20 [3], and by Omicron with a single-detector SNR of 12 in Hanford and 9 in Livingston. The time-frequency morphology of the event is distinct from the known noise sources discussed in Section 3.
Figure 11:
Figure 11:
A normalized spectrogram centered around the time of GW150914 of a Streckeisen STS-2 seismometer located near the Y-end test mass. An air compressor turns on at −75 seconds and off at +100 seconds.
Figure 12:
Figure 12:
A blip transient in LIGO-Livingston strain data that produced a significant background trigger in the CBC analysis in orange, and the best-match template waveform (amplitude-scaled for comparison) in black, which exhibits a few more low-SNR cycles but otherwise quite similar morphology. The best-match waveform for the GW150914 signal, in gray, is quite distinct from both the blip transient and the neutron-star-black-hole (NSBH) waveform that most closely matches it, with more than 10 distinct cycles shown and a significant increase in frequency over time. All three time series have the same zero-phase band-pass filter applied.
Figure 13:
Figure 13:
Normalized spectrograms of LVT151012 in LIGO-Hanford (left) and LIGO-Livingston (right) h(t) data with the same central GPS time. Note these spectrograms have a much smaller normalized energy scale than those in Figure 10.
Figure 14:
Figure 14:
The rate of transient noise as witnessed by the single detector burst algorithm Omicron for the LIGO Hanford (above) and LIGO-Livingston (below) detectors. Each dot represents the average trigger rate over a 600 second interval. Green dots show triggers with an SNR above 5, and blue crosses show triggers with an SNR above 10. Time vetoed from the analysis period is indicated in gray. The time of GW150914 is indicated with a vertical dashed line and LVT151012 with a dot-dashed line.

References

    1. Abbott BP et al. (LIGO Scientific Collaboration and Virgo Collaboration). Observation of Gravitational Waves from a Binary Black Hole Merger. PRL, 116(061102), 2016. - PubMed
    1. Abbott BP et al. (LIGO Scientific Collaboration and Virgo Collaboration). GW150914: First Results from the Search for Binary Black Hole Coalescence with Advanced LIGO. Preprint arXiv:1602.03839, 2016. - PMC - PubMed
    1. Abbott BP et al. (LIGO Scientific Collaboration and Virgo Collaboration). Observing Gravitational-Wave Transient GW150914 with Minimal Assumptions. Preprint arXiv:1602.03843, 2016.
    1. Abbott BP (LIGO Scientific Collaboration and Virgo Collaboration). GW150914: The Advanced LIGO Detectors in thEfflera of First Discoveries. PRL, 116(131103), 2016. - PubMed
    1. Martynov D et al. The Sensitivity of the Advanced LIGO Detectors at the Beginning of Gravitational Wave Astronomy. Preprint arXiv:1604.00439, 2016.

LinkOut - more resources