Adaptive slice-specific z-shimming for 2D spoiled gradient-echo sequences
- PMID: 32909334
- PMCID: PMC7693070
- DOI: 10.1002/mrm.28468
Adaptive slice-specific z-shimming for 2D spoiled gradient-echo sequences
Abstract
Purpose: To reduce the misbalance between compensation gradients and macroscopic field gradients, we introduce an adaptive slice-specific z-shimming approach for 2D spoiled multi-echo gradient-echoe sequences in combination with modeling of the signal decay.
Methods: Macroscopic field gradients were estimated for each slice from a fast prescan (15 seconds) and then used to calculate slice-specific compensation moments along the echo train. The coverage of the compensated field gradients was increased by applying three positive and three negative moments. With a forward model, which considered the effect of the slice profile, the z-shim moment, and the field gradient, maps were estimated. The method was evaluated in phantom and in vivo measurements at 3 T and compared with a spoiled multi-echo gradient-echo and a global z-shimming approach without slice-specific compensation.
Results: The proposed method yielded higher SNR in maps due to a broader range of compensated macroscopic field gradients compared with global z-shimming. In global white matter, the mean interquartile range, proxy for SNR, could be decreased to 3.06 s-1 with the proposed approach, compared with 3.37 s-1 for global z-shimming and 3.52 s-1 for uncompensated multi-echo gradient-echo.
Conclusion: Adaptive slice-specific compensation gradients between echoes substantially improved the SNR of maps, and the signal could also be rephased in anatomical areas, where it has already been completely dephased.
Keywords: relaxometry; relaxometry; field inhomogeneities; gradient-echo; z-shim.
© 2020 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
Figures
References
-
- Ogg RJ, Langston JW, Haacke EM, Steen RG, Taylor JS. The correlation between phase shifts in gradient‐echo MR images and regional brain iron concentration. Magn Reson Imaging. 1999;17:1141‐1148. - PubMed
-
- Li L, Leigh JS. Quantifying arbitrary magnetic susceptibility distributions with MR. Magn Reson Med. 2004;51:1077‐1082. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
