Luminescent Colloidal InSb Quantum Dots from In Situ Generated Single-Source Precursor
- PMID: 32915541
- PMCID: PMC7596776
- DOI: 10.1021/acsnano.0c04744
Luminescent Colloidal InSb Quantum Dots from In Situ Generated Single-Source Precursor
Abstract
Despite recent advances, the synthesis of colloidal InSb quantum dots (QDs) remains underdeveloped, mostly due to the lack of suitable precursors. In this work, we use Lewis acid-base interactions between Sb(III) and In(III) species formed at room temperature in situ from commercially available compounds (viz., InCl3, Sb[NMe2]3 and a primary alkylamine) to obtain InSb adduct complexes. These complexes are successfully used as precursors for the synthesis of colloidal InSb QDs ranging from 2.8 to 18.2 nm in diameter by fast coreduction at sufficiently high temperatures (≥230 °C). Our findings allow us to propose a formation mechanism for the QDs synthesized in our work, which is based on a nonclassical nucleation event, followed by aggregative growth. This yields ensembles with multimodal size distributions, which can be fractionated in subensembles with relatively narrow polydispersity by postsynthetic size fractionation. InSb QDs with diameters below 7.0 nm have the zinc blende crystal structure, while ensembles of larger QDs (≥10 nm) consist of a mixture of wurtzite and zinc blende QDs. The QDs exhibit photoluminescence with small Stokes shifts and short radiative lifetimes, implying that the emission is due to band-edge recombination and that the direct nature of the bandgap of bulk InSb is preserved in InSb QDs. Finally, we constructed a sizing curve correlating the peak position of the lowest energy absorption transition with the QD diameters, which shows that the band gap of colloidal InSb QDs increases with size reduction following a 1/d dependence.
Keywords: III−V semiconductors; colloidal quantum dots; indium antimonide; near-infrared emission; semiconductor nanocrystals; single-source precursor.
Conflict of interest statement
The authors declare no competing financial interest.
Figures






Similar articles
-
Stepwise Crystallization Synthetic Strategy for Monodisperse InSb Colloidal Quantum Dots with Mid-Infrared Absorption.Angew Chem Int Ed Engl. 2025 Jun 17;64(25):e202506387. doi: 10.1002/anie.202506387. Epub 2025 Apr 21. Angew Chem Int Ed Engl. 2025. PMID: 40226861
-
Selective antimony reduction initiating the nucleation and growth of InSb quantum dots.Nanoscale. 2018 Jun 14;10(23):11110-11116. doi: 10.1039/c8nr02381f. Nanoscale. 2018. PMID: 29872813
-
Synthesis of colloidal InSb nanocrystals via in situ activation of InCl3.Dalton Trans. 2015 Oct 14;44(38):16923-8. doi: 10.1039/c5dt02181b. Epub 2015 Sep 11. Dalton Trans. 2015. PMID: 26361234
-
Pnictide-based colloidal quantum dots for infrared sensing applications.Nano Converg. 2025 May 29;12(1):26. doi: 10.1186/s40580-025-00489-y. Nano Converg. 2025. PMID: 40439823 Free PMC article. Review.
-
Harnessing the properties of colloidal quantum dots in luminescent solar concentrators.Chem Soc Rev. 2018 Jul 30;47(15):5866-5890. doi: 10.1039/c7cs00701a. Chem Soc Rev. 2018. PMID: 29915833 Review.
Cited by
-
Rapid, facile synthesis of InSb twinning superlattice nanowires with a high-frequency photoconductivity response.RSC Adv. 2021 May 28;11(32):19426-19432. doi: 10.1039/d1ra01903a. eCollection 2021 May 27. RSC Adv. 2021. PMID: 35479246 Free PMC article.
-
Anisotropic growth of ZnO nanoparticles driven by the structure of amine surfactants: the role of surface dynamics in nanocrystal growth.Nanoscale Adv. 2021 Aug 30;3(21):6088-6099. doi: 10.1039/d1na00566a. eCollection 2021 Oct 27. Nanoscale Adv. 2021. PMID: 36133935 Free PMC article.
-
Interdiffusion-enhanced cation exchange for HgSe and HgCdSe nanocrystals with infrared bandgaps.Nat Synth. 2024 Oct;3(10):1243-1254. doi: 10.1038/s44160-024-00597-3. Epub 2024 Jul 3. Nat Synth. 2024. PMID: 40880626 Free PMC article.
-
Effect of the surface coverage of an alkyl carboxylic acid monolayer on waterborne and cellular uptake behaviors for silicon quantum dots.Sci Rep. 2022 Oct 14;12(1):17211. doi: 10.1038/s41598-022-21698-z. Sci Rep. 2022. PMID: 36241686 Free PMC article.
-
Near infrared bioimaging and biosensing with semiconductor and rare-earth nanoparticles: recent developments in multifunctional nanomaterials.Nanoscale Adv. 2021 Oct 6;3(22):6310-6329. doi: 10.1039/d1na00502b. eCollection 2021 Nov 9. Nanoscale Adv. 2021. PMID: 36133487 Free PMC article. Review.
References
-
- Goldbery Y. A.Handbook Series on Semiconductor Parameters; Levinshtein M., Rumyantsev S., Shur M., Eds.; World Scientific: London, 1996; Vol.1, pp 191–213.
-
- Nilsson H. A.; Caroff P.; Thelander C.; Lind E.; Karlström O.; Wernersson L. E. Temperature Dependent Properties of InSb and InAs Nanowire Field-Effect Transistors. Appl. Phys. Lett. 2010, 96, 153505.10.1063/1.3402760. - DOI
-
- Isaacson R. A. Electron Spin Resonance in n-Type InSb. Phys. Rev. 1968, 169, 312–314. 10.1103/PhysRev.169.312. - DOI
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous