Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Mar;160(4):1179-1193.e14.
doi: 10.1053/j.gastro.2020.09.003. Epub 2020 Sep 11.

Streptococcus thermophilus Inhibits Colorectal Tumorigenesis Through Secreting β-Galactosidase

Affiliations

Streptococcus thermophilus Inhibits Colorectal Tumorigenesis Through Secreting β-Galactosidase

Qing Li et al. Gastroenterology. 2021 Mar.

Abstract

Background & aims: Streptococcus thermophilus was identified to be depleted in patients with colorectal cancer (CRC) by shotgun metagenomic sequencing of 526 multicohort fecal samples. Here, we aim to investigate whether this bacterium could act as a prophylactic for CRC prevention.

Methods: The antitumor effects of S thermophilus were assessed in cultured colonic epithelial cells and in 2 murine models of intestinal tumorigenesis. The tumor-suppressive protein produced by S thermophilus was identified by mass spectrometry and followed by β-galactosidase activity assay. The mutant strain of S thermophilus was constructed by homologous recombination. The effect of S thermophilus on the gut microbiota composition was assessed by shotgun metagenomic sequencing.

Results: Oral gavage of S thermophilus significantly reduced tumor formation in both Apcmin/+ and azoxymethane-injected mice. Coincubation with S thermophilus or its conditioned medium decreased the proliferation of cultured CRC cells. β-Galactosidase was identified as the critical protein produced by S thermophilus by mass spectrometry screening and β-galactosidase activity assay. β-Galactosidase secreted by S thermophilus inhibited cell proliferation, lowered colony formation, induced cell cycle arrest, and promoted apoptosis of cultured CRC cells and retarded the growth of CRC xenograft. The mutant S thermophilus without functional β-galactosidase lost its tumor-suppressive effect. Also, S thermophilus increased the gut abundance of known probiotics, including Bifidobacterium and Lactobacillus via β-galactosidase. β-Galactosidase-dependent production of galactose interfered with energy homeostasis to activate oxidative phosphorylation and downregulate the Hippo pathway kinases, which partially mediated the anticancer effects of S thermophilus.

Conclusion: S thermophilus is a novel prophylactic for CRC prevention in mice. The tumor-suppressive effect of S thermophilus is mediated at least by the secretion of β-galactosidase.

Keywords: S thermophilus; colorectal cancer; β-galactosidase.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources