Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Aug 14:11:2042.
doi: 10.3389/fimmu.2020.02042. eCollection 2020.

Methotrexate Enhances Apoptosis of Transmembrane TNF-Expressing Cells Treated With Anti-TNF Agents

Affiliations

Methotrexate Enhances Apoptosis of Transmembrane TNF-Expressing Cells Treated With Anti-TNF Agents

Qiaolei Wang et al. Front Immunol. .

Abstract

Background: Concomitant use of methotrexate (MTX) improves the clinical efficacy of anti-TNF agents in the treatment of rheumatoid arthritis (RA). We aimed to clarify the cytotoxic effect of MTX on transmembrane TNF (tmTNF)-expressing cells treated with anti-TNF agents.

Methods: Jurkat T cells stably expressing tmTNF were used for the following experiments. Cytotoxicity induced by an anti-TNF agent (infliximab, adalimumab, or certolizumab pegol) with concomitant MTX were compared with that by MTX alone or by an anti-TNF agent alone using flow cytometry. Apoptosis-induction mediated by reverse signal through tmTNF, complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC), and antibody-dependent cellular phagocytosis (ADCP) were evaluated. Folic acid and Y-27632, a Rho kinase inhibitor, were used as inhibitors to study intracellular signaling pathway in apoptosis induced by MTX and anti-TNF agents.

Results: Apoptosis of tmTNF-expressing cells was significantly increased by the concomitant administration of MTX and an anti-TNF agent, compared with MTX alone or an anti-TNF agent alone. The apoptosis induction by concomitant MTX was most pronounced in infliximab-treatment. Reverse signal transduction, but not CDC or ADCC/ADCP, was responsible for the coordinate effect of MTX and an anti-TNF agent on tmTNF-expressing cells. Folic acid inhibited MTX-mediated apoptosis, while Y-27632 suppressed JNK activation and infliximab-induced apoptosis via revere signal through tmTNF.

Conclusion: The apoptotic effect was enhanced by combination of MTX and an anti-TNF agent in tmTNF-expressing cells. The intracellular pathways induced by MTX and anti-TNF agents seem to be independent. These findings might explain at least in part improved the clinical response upon co-therapy of MTX and an anti-TNF agent in RA.

Keywords: anti-TNF agent; apoptosis; cytotoxicity; methotrexate; rheumatoid arthritis; transmembrane TNF.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
Concomitant treatment of MTX with an anti-TNF agent enhanced apoptosis of tmTNF-expressing cells. (A) Mock or tmTNF-transfected Jurkat cells were stained with FITC-conjugated mouse anti-TNF-α mAb or control mouse IgG and analyzed by flow cytometry. The histograms show the cell surface expression levels of tmTNF. (B) TmTNF-Jurkat cells were incubated with 0.1 μM of MTX for 20 h, 0.01 μM of infliximab (IFX) for 6 h, or combination of MTX and IFX for 6 h after MTX for 14 h. Stimulated cells were stained with FITC-conjugated Annexin V and propidium iodide (PI), and the apoptotic cells were detected by flow cytometry. (C) The proportion of Annexin V-positive apoptotic cells was indicated. Values are mean (±SEM) of each group (n = 5/group). (D) TmTNF-expressing Jurkat cells were incubated with 0.1 μM MTX for 24 h, 0.01 μM ETN for 12 h, or combination of MTX and ETN for 12 h after MTX for 12 h. The proportion of Annexin V-positive cells was indicated. Values are mean (±SEM) of each group (n = 6/group). (E) TmTNF-expressing Jurkat cells were incubated with 0.1 μM MTX for 24 h, 0.01 μM CZP for 12 h, or combination of MTX and CZP for 12 h after MTX for 12 h. The proportion of Annexin V-positive cells was indicated. Values are mean (±SEM) of each group (n = 6/group). *p < 0.05, **p < 0.01, Mann-Whitney U tests.
FIGURE 2
FIGURE 2
Complement-dependent cytotoxicity induced by IFX in co-stimulation with MTX. TmTNF-expressing Jurkat cells were stimulated with 0.1 μM MTX for 25 h, 0.01 μM IFX for 1 h, or combination of MTX and IFX for 1 h after MTX for 1 h, with 5% human fresh serum (white bar) or heat-inactivated serum (black bar). Treated cells were stained with PI and dead cells were detected by flow cytometry. The proportion of dead cells was indicated. Values are mean (±SEM) of each group (n = 3/group).
FIGURE 3
FIGURE 3
Antibody-dependent cell-mediated cytotoxicity and antibody-dependent cellular phagocytosis induced by IFX in co-stimulation with MTX. (A) TmTNF-expressing Jurkat cells were used as target cells and labeled with membrane dye PKH26. Peripheral blood mononuclear cells (PBMCs) were used as effector cells and co-incubated with target cells on flat-bottom plates. The ratios of effector cells and target cells was from 1:4 to 4:1. Cells were incubated with MTX for 24 h, IFX for 2 h, or combination of MTX and IFX for 2 h after MTX for 24 h. As a control, target cells were incubated with effector cells without MTX and IFX. Treated cells were stained with TO-PRO-3 iodide. TO-PRO-3 iodide-positive dead cells in PKH26-positive target cells were detected by flow cytometry. Proportion of dead cells in target cells was indicated. Values are mean ± SEM; n = 4/group. (B) TmTNF Jurkat cells (2 × 104 in 150 μl/well) were co-incubated with FcγRIIa-H effector cells (2 × 104 in 150 μl/well) and stimulated with 0.1 μM MTX, 0.01 μM IFX, or MTX+IFX for 6 h. Treated cells were cultured with luciferase assay buffer for 20 min and the luminous cells were detected by a luminometer. Values are mean ± SEM; n = 3/group. *p < 0.05, Mann-Whitney U tests.
FIGURE 4
FIGURE 4
MTX-induced apoptosis was mediated by folate cycle inhibition. TmTNF-expressing Jurkat cells were incubated with 0.1 μM MTX for 24 h, 0.01 μM IFX for 4 h or combination of MTX and IFX for 4 h after MTX for 20 h, in the presence of 0, 10, 100, and 1000 μM folic acid. Proportion of Annexin V-positive cells were indicated. Values are mean (±SEM) of each group (n = 4/group). *p < 0.05, Mann Whitney U tests.
FIGURE 5
FIGURE 5
Infliximab-induced apoptosis was mediated by activation of Rho kinase. (A) TmTNF-expressing Jurkat cells were incubated with 0.1 μM MTX for 20 h, 0.01 μM IFX for 6 h, or combination of MTX and IFX for 6 h after MTX for 14 h, in the presence (white bar) or absence (black bar) of 0.01 μM of Rho kinase inhibitor (Y-27632). Apoptotic cells were analyzed by flow cytometry using Annexin V staining. The proportion of Annexin V-positive cells was indicated. (B) TmTNF- expressing Jurkat cells were stimulated with 0.1 μM MTX for 24 h, 0.01 μM ETN for 12 h, or combination of MTX and ETN for 12 h after MTX for 12 h with or without Y-27632. (C) TmTNF-expressing Jurkat cells were stimulated with 0.1 μM MTX for 24 h, 0.01 μM CZP for 12 h, or combination of MTX and CZP for 12 h after MTX for 12 h with or without Y-27632. Values are mean ± SEM; n = 4/group in (A) and n = 5/group in (B,C). *p < 0.05, **p < 0.01, Mann Whitney U tests. (D,E) TmTNF-expressing Jurkat cells were stimulated with 0.01 μM IFX for 2 h in the presence (Rho-i + IFX) or absence (IFX) of 0.01 μM of Y-27632. Stimulated cells or unstimulated cells (Ctrl) were lysed in lysis buffer and the levels of phosphorylated JNK (p-JNK) was analyzed in western blotting (D). The ratio of p-JNK: total JNK is indicated in (E).
FIGURE 6
FIGURE 6
Concomitant treatment of MTX with an anti-TNF agent enhanced apoptosis of activated human CD4+ T cells. (A) CD4+ T cells were cultivated in the 96-well plate and activated by anti-CD3/28 Ab for 1 h. And then, cells were stimulated with 5 μg/ml PHA for 48 h. Cells were stained with FITC-conjugated anti-TNF and expression levels of TNF on the cells surface was detected by flow cytometry. (B) CD4+ T cells were untreated (Ctrl) or treated with PHA and stimulated with 1 μM MTX, 1 μM IFX, or combination of MTX and IFX for 48 h. The stimulated cells were stained with FITC-conjugated Annexin V and PI, and the apoptotic cells were detected by flow cytometry. (C,D) Similar experiments were performed with ETN (C) or CZP (D) instead of IFX. Values are mean ± SEM; n = 5/group, *p < 0.05, **p < 0.01, Paired t-test.

Similar articles

Cited by

References

    1. Bradley JR. TNF-mediated inflammatory disease. J Pathol. (2008) 214:149–60. 10.1002/path.2287 - DOI - PubMed
    1. Feldmann M, Maini RN. Anti-TNF alpha therapy of rheumatoid arthritis: what have we learned? Annu Rev Immunol. (2001) 19:163–96. 10.1146/annurev.immunol.19.1.163 - DOI - PubMed
    1. Steeland S, Libert C, Vandenbroucke RE. A new venue of TNF targeting. Int J Mol Sci. (2018) 19:1442. 10.3390/ijms19051442 - DOI - PMC - PubMed
    1. Horiuchi T, Mitoma H, Harashima S, Tsukamoto H, Shimoda T. Transmembrane TNF-alpha: structure, function and interaction with anti-TNF agents. Rheumatology. (2010) 49:1215–28. 10.1093/rheumatology/keq031 - DOI - PMC - PubMed
    1. Mitoma H, Horiuchi T, Tsukamoto H. Binding activities of infliximab and etanercept to transmembrane tumor necrosis factor-alpha. Gastroenterology. (2004) 126:934–5; author reply 5–6. - PubMed

Publication types

MeSH terms