Multidimensional scaling locus of memristor and fractional order elements
- PMID: 32922982
- PMCID: PMC7474200
- DOI: 10.1016/j.jare.2020.01.004
Multidimensional scaling locus of memristor and fractional order elements
Abstract
This paper combines the synergies of three mathematical and computational generalizations. The concepts of fractional calculus, memristor and information visualization extend the classical ideas of integro-differential calculus, electrical elements and data representation, respectively. The study embeds these notions in a common framework, with the objective of organizing and describing the "continuum" of fractional order elements (FOE). Each FOE is characterized by its behavior, either in the time or in the frequency domains, and the differences between the FOE are captured by a variety of distinct indices, such as the Arccosine, Canberra, Jaccard and Sørensen distances. The dissimilarity information is processed by the multidimensional scaling (MDS) computational algorithm to unravel possible clusters and to allow a direct pattern visualization. The MDS yields 3-dimensional loci organized according to the FOE characteristics both for linear and nonlinear elements. The new representation generalizes the standard Cartesian 2-dimensional periodic table of elements.
Keywords: Fractional calculus; Information visualization; Memristor; Multidimensional scaling; Procrustes analysis.
© 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University.
Conflict of interest statement
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Figures











Similar articles
-
Fractional-Order Sensing and Control: Embedding the Nonlinear Dynamics of Robot Manipulators into the Multidimensional Scaling Method.Sensors (Basel). 2021 Nov 20;21(22):7736. doi: 10.3390/s21227736. Sensors (Basel). 2021. PMID: 34833812 Free PMC article.
-
Fractal and Entropy Analysis of the Dow Jones Index Using Multidimensional Scaling.Entropy (Basel). 2020 Oct 8;22(10):1138. doi: 10.3390/e22101138. Entropy (Basel). 2020. PMID: 33286907 Free PMC article.
-
Principle and Application of Frequency-Domain Characteristic Analysis of Fractional-Order Memristor.Micromachines (Basel). 2022 Sep 12;13(9):1512. doi: 10.3390/mi13091512. Micromachines (Basel). 2022. PMID: 36144135 Free PMC article.
-
Fractional calculus in bioengineering, part 3.Crit Rev Biomed Eng. 2004;32(3-4):195-377. doi: 10.1615/critrevbiomedeng.v32.i34.10. Crit Rev Biomed Eng. 2004. PMID: 15651636 Review.
-
Fractional calculus in bioengineering, part 2.Crit Rev Biomed Eng. 2004;32(2):105-93. doi: 10.1615/critrevbiomedeng.v32.i2.10. Crit Rev Biomed Eng. 2004. PMID: 15373276 Review.
Cited by
-
Optimal charging of fractional-order circuits with Cuckoo search.J Adv Res. 2020 Dec 3;32:119-131. doi: 10.1016/j.jare.2020.11.014. eCollection 2021 Sep. J Adv Res. 2020. PMID: 34484831 Free PMC article.
-
A Preprocessing Manifold Learning Strategy Based on t-Distributed Stochastic Neighbor Embedding.Entropy (Basel). 2023 Jul 14;25(7):1065. doi: 10.3390/e25071065. Entropy (Basel). 2023. PMID: 37510011 Free PMC article.
-
Modeling and Analysis of a Three-Terminal-Memristor-Based Conservative Chaotic System.Entropy (Basel). 2021 Jan 4;23(1):71. doi: 10.3390/e23010071. Entropy (Basel). 2021. PMID: 33406791 Free PMC article.
-
Uniform Manifold Approximation and Projection Analysis of Soccer Players.Entropy (Basel). 2021 Jun 23;23(7):793. doi: 10.3390/e23070793. Entropy (Basel). 2021. PMID: 34201479 Free PMC article.
-
Analysis and implementation of fractional-order chaotic system with standard components.J Adv Res. 2020 Jun 19;25:97-109. doi: 10.1016/j.jare.2020.05.008. eCollection 2020 Sep. J Adv Res. 2020. PMID: 32922978 Free PMC article. Review.
References
-
- Ross B. Fractional calculus. Math Mag. 1977;50(3):115–122.
-
- Yang X.-J., Baleanu D., Srivastava H.M. Academic Press; London: 2015. Local fractional integral transforms and their applications.
-
- Valério D., Machado J.T., Kiryakova V. Some pioneers of the applications of fractional calculus. Fract Calculus Appl Anal. 2014;17(2):552–578.
-
- Tenreiro Machado J.A., Kiryakova Virginia, Kochubei Anatoly, Luchko Yuri. Recent history of the fractional calculus: data and statistics. In: Kochubei Anatoly, Luchko Yuri., editors. Basic theory. De Gruyter; Berlin, Boston: 2019. pp. 1–22. - DOI
-
- Josephs H.J. Oliver Heaviside papers found at Paignton in 1957. Inst Electric Eng. 1959;319:70–76.
Publication types
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous