Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Mar;53(3 Suppl):I3-14.

Contribution of tissue acidosis to ischemic injury in the perfused rat heart

  • PMID: 3293

Contribution of tissue acidosis to ischemic injury in the perfused rat heart

J R Williamson et al. Circulation. 1976 Mar.

Abstract

The isolated perfused working rat heart preparation has been used to study the effects of respiratory acidosis on myocardial metabolism and contractilly. Hearts were perfused with 5 mM glucose and 10(-2) U/ml of insulin in order to enhance metabolsim of glucose relative to that of fatty acids. After perfusion with Krebs bicarbonate medium at pH 6.6, hearts rapidly ceased performing external work and peak left ventricular pressure fell by 75% after 5 minutes. Oxygen consumption, rate of ATP generation and overall glycolytic flux also declined rapidly. After about 2 minutes of perfusion, the fall of glycolytic flux showed a partial reversal, which was largely accounted for by increased lactate production, so that glucose oxidation decreased further. The reversal of glycoltic flux could be accounted for by partial release of H+ inhibition of phospho-fructokinase by increased tissue levels of adenosine 5'-diphosphate (ADP), adenosine monophosphate (AMP) and P1 and decreased levels of adenosine triphosphate (ATP) and creatine phosphate. The increased proportion of glucose uptake converted to lactate together with an increase of the tissue lactate/pyruvate ratio could be accounted for by inhibition of the malate-aspartate cycle combined with tissue hypoxia. Lactate accumulated in the tissue as a result of a decreased permeability of the plasma membrane to lactate. Decreased oxygen delivery to the myocardium was caused by secondary constriction of the coronary vessels. In further experiments, the coronary flow was regulated by an external pump which delivered fluid at a controlled rate into the aortic cannula above the coronary arteries, and the degree of tissue hypoxia was monitored by measuring changes of pyridine nucleotide reduction state by surface fluorescence techniques. The effects of acidosis uncomplicated by possible hypoxia were compared directly with those produced by ischemic hypoxia. The effects of acidosis under these conditions were similar to those described above, and to those produced by ischemia. From these and other data it is concluded that the effects of ischemia are caused by a lowering of the intracellular pH, which decreases the rate of energy production relative to the rate of energy demand. However, it is suggested that the primary cause of the decreased peak systolic pressure with either acidosis or ischemia is not a result of a defect of energy metabolism, but is due to alteration of the calcium cycle of the heart. Possible causes of irreversible heart failure after prolonged ischemia are discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources