Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 May;25(5):1724-1734.
doi: 10.1109/JBHI.2020.3024188. Epub 2021 May 11.

Multi-Res-Attention UNet: A CNN Model for the Segmentation of Focal Cortical Dysplasia Lesions from Magnetic Resonance Images

Multi-Res-Attention UNet: A CNN Model for the Segmentation of Focal Cortical Dysplasia Lesions from Magnetic Resonance Images

Edwin Thomas et al. IEEE J Biomed Health Inform. 2021 May.

Abstract

In this work, we have focused on the segmentation of Focal Cortical Dysplasia (FCD) regions from MRI images. FCD is a congenital malformation of brain development that is considered as the most common causative of intractable epilepsy in adults and children. To our knowledge, the latest work concerning the automatic segmentation of FCD was proposed using a fully convolutional neural network (FCN) model based on UNet. While there is no doubt that the model outperformed conventional image processing techniques by a considerable margin, it suffers from several pitfalls. First, it does not account for the large semantic gap of feature maps passed from the encoder to the decoder layer through the long skip connections. Second, it fails to leverage the salient features that represent complex FCD lesions and suppress most of the irrelevant features in the input sample. We propose Multi-Res-Attention UNet; a novel hybrid skip connection-based FCN architecture that addresses these drawbacks. Moreover, we have trained it from scratch for the detection of FCD from 3 T MRI 3D FLAIR images and conducted 5-fold cross-validation to evaluate the model. FCD detection rate (Recall) of 92% was achieved for patient wise analysis.

PubMed Disclaimer

Publication types

LinkOut - more resources