Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Sep 11;10(9):631.
doi: 10.3390/brainsci10090631.

Analyzing the Potential Biological Determinants of Autism Spectrum Disorder: From Neuroinflammation to the Kynurenine Pathway

Affiliations
Review

Analyzing the Potential Biological Determinants of Autism Spectrum Disorder: From Neuroinflammation to the Kynurenine Pathway

Rosa Savino et al. Brain Sci. .

Abstract

Autism Spectrum Disorder (ASD) etiopathogenesis is still unclear and no effective preventive and treatment measures have been identified. Research has focused on the potential role of neuroinflammation and the Kynurenine pathway; here we review the nature of these interactions. Pre-natal or neonatal infections would induce microglial activation, with secondary consequences on behavior, cognition and neurotransmitter networks. Peripherally, higher levels of pro-inflammatory cytokines and anti-brain antibodies have been identified. Increased frequency of autoimmune diseases, allergies, and recurring infections have been demonstrated both in autistic patients and in their relatives. Genetic studies have also identified some important polymorphisms in chromosome loci related to the human leukocyte antigen (HLA) system. The persistence of immune-inflammatory deregulation would lead to mitochondrial dysfunction and oxidative stress, creating a self-sustaining cytotoxic loop. Chronic inflammation activates the Kynurenine pathway with an increase in neurotoxic metabolites and excitotoxicity, causing long-term changes in the glutamatergic system, trophic support and synaptic function. Furthermore, overactivation of the Kynurenine branch induces depletion of melatonin and serotonin, worsening ASD symptoms. Thus, in genetically predisposed subjects, aberrant neurodevelopment may derive from a complex interplay between inflammatory processes, mitochondrial dysfunction, oxidative stress and Kynurenine pathway overexpression. To validate this hypothesis a new translational research approach is necessary.

Keywords: KYNA (kynurenic acid); Kynurenine pathway; QUIN (quinolinic acid); autism spectrum disorder; immune deregulation; microglia; mitochondrial disorder; neuroinflammation; oxidative stress; tryptophan catabolites.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Figure 1
Figure 1
KYNUNERINE PATHWAY: indole-2,3-dioxygenase (IDO) and Tryptophan-2,3-dioxygenase (TDO) lead to Kynurenine synthesis from Tryptophan (TRP), which can be metabolized via two distinct pathways: the neuroprotective kynurenic acid (KYNA) branch via the KYN amino transferase enzyme (KAT), and the neurotoxic branch leading to the production of 3-hydroxy-L-KYN (3-HK) and quinolinic acid (QUIN).
Figure 2
Figure 2
Inflammation significantly shifts tryptophan metabolism to Kynurenine production by activation of activate indole-2,3-dioxygenase (IDO) and Kynurenine monooxygenase (KMO) microglial enzymes. Quinolinic acid (QUIN) is involved in neurotoxicity since it activates N-methyl-D-aspartate (NMDA) receptors, increases neuronal activity, and elevates intracellular calcium concentrations. This leads to the consequent impairment of cytoskeleton homeostasis, decrease of mitochondrial function and finally cell death induction. As an NMDA agonist, it increases neuronal glutamate release, inhibits its uptake by astrocytes, and inhibits astroglial glutamine synthetase leading to excessive microenvironmental glutamate concentrations. In addition, QUIN contributes to free radical generation and oxidative stress.
Figure 3
Figure 3
Kynurenine (KP) as a crossroad between disrupted routes and pathophysiological conditions that are Autism Spectrum Disorder (ASD) related.
Figure 4
Figure 4
Therapeutic targeting of KP.

Similar articles

Cited by

References

    1. American Psychiatric Association . Diagnostic and Statistical Manual of Mental Disorders. 5th ed. American Psychiatric Association; Washington, DC, USA: 2013.
    1. Baio J., Wiggins L., Christensen D.L., Maenner M.J., Daniels J., Warren Z., Kurzius-Spencer M., Zahorodny W., Robinson Rosenberg C., White T., et al. Prevalence of Autism Spectrum Disorder among Children Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2014. MMWR Surveill. Summ. 2018;67:1–23. doi: 10.15585/mmwr.ss6706a1. - DOI - PMC - PubMed
    1. Zhou J., Park C.Y., Theesfeld C.L., Wong A.K., Yuan Y., Scheckel C., Fak J.J., Funk J., Yao K., Tajima Y., et al. Whole-genome deep-learning analysis identifies contribution of noncoding mutations to autism risk. Nat. Genet. 2019;51:973–980. doi: 10.1038/s41588-019-0420-0. - DOI - PMC - PubMed
    1. Chang J., Gilman S.R., Chiang A.H., Sanders S.J., Vitkup D. Genotype to phenotype relationships in autism spectrum disorders. Nat. Neurosci. 2015;18:191–198. doi: 10.1038/nn.3907. - DOI - PMC - PubMed
    1. Xu N., Li X., Zhong Y. Inflammatory Cytokines: Potential Biomarkers of Immunologic Dysfunction in Autism Spectrum Disorders. Mediat. Inflamm. 2015;2015:1–10. doi: 10.1155/2015/531518. - DOI - PMC - PubMed