Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Sep 16;18(1):246.
doi: 10.1186/s12916-020-01715-6.

Mitochondrial DNA copy number and incident atrial fibrillation

Affiliations

Mitochondrial DNA copy number and incident atrial fibrillation

Di Zhao et al. BMC Med. .

Abstract

Background: Mechanistic studies suggest that mitochondria DNA (mtDNA) dysfunction may be associated with increased risk of atrial fibrillation (AF). The association between mtDNA copy number (mtDNA-CN) and incident AF in the general population, however, remains unknown.

Methods: We conducted prospective analyses of 19,709 participants from the Atherosclerosis Risk in Communities Study (ARIC), the Multi-Ethnic Study of Atherosclerosis (MESA), and the Cardiovascular Health Study (CHS). mtDNA-CN from the peripheral blood was calculated from probe intensities on the Affymetrix Genome-Wide Human single nucleotide polymorphisms (SNP) Array 6.0 in ARIC and MESA and from multiplexed real-time quantitative polymerase chain reaction (qPCR) in CHS. Incident AF cases were identified through electrocardiograms, review of hospital discharge codes, Medicare claims, and death certificates.

Results: The median follow-up time was 21.4 years in ARIC, 12.9 years in MESA, and 11.0 years in CHS, during which 4021 participants developed incident atrial fibrillation (1761 in ARIC, 790 in MESA, and 1470 in CHS). In fully adjusted models, participants with the lowest quintile of mitochondria DNA copy number had an overall 13% increased risk (95% CI 1 to 27%) of incident atrial fibrillation compared to those with the highest quintile. Dose-response spline analysis also showed an inverse association between mitochondria DNA copy number and hazard for atrial fibrillation for all three cohorts. These associations were consistent across subgroups.

Conclusions: Mitochondria DNA copy number was inversely associated with the risk of AF independent of traditional cardiovascular risk factors. These findings implicate mitochondria DNA copy number as a novel risk factor for atrial fibrillation. Further research is warranted to understand the underlying mechanisms and to evaluate the role of mitochondria DNA copy number in the management of atrial fibrillation risk.

Keywords: Atrial fibrillation; Mitochondria DNA copy number; mtDNA.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Flowchart of study participants
Fig. 2
Fig. 2
Hazard ratios for incident atrial fibrillation by levels of mtDNA copy number. The figure includes hazard ratios for comparing quintiles 1st to 4th with the 5th quintile (reference) of mtDNA copy number, as well as the hazard ratio for comparing the 10th to the 90th percentile of mtDNA copy number. Models were adjusted for age, sex, race/enrollment center, body mass index, height, smoking, alcohol intake, physical activity, total and HDL cholesterol, cholesterol medication, hypertension, diabetes, prevalent CHD, prevalent heart failure, eGFR, and log-transformed NT-proBNP at baseline
Fig. 3
Fig. 3
Spline regression analysis of incident atrial fibrillation by levels of mtDNA copy number. The curves represent adjusted hazard ratios (solid line) and their 95% confidence intervals (dashed lines) based on restricted cubic splines of mtDNA copy number with knots at the 5th, 35th, 65th, and 95th percentiles of its distribution. The reference value (diamond dot) was set at the 90th percentile of the distribution. Models were adjusted for age, sex, race/enrollment center, body mass index, height, smoking, alcohol intake, physical activity, total and HDL cholesterol, cholesterol medication, hypertension, diabetes, prevalent CHD, prevalent heart failure, eGFR, and log-transformed NT-proBNP at baseline. Histograms represent the frequency distribution of mtDNA copy number at baseline

Similar articles

Cited by

References

    1. Lloyd-Jones DM, Wang TJ, Leip EP, Larson MG, Levy D, Vasan RS, D’Agostino RB, Massaro JM, Beiser A, Wolf PA, et al. Lifetime risk for development of atrial fibrillation: the Framingham Heart Study. Circulation. 2004;110(9):1042–1046. doi: 10.1161/01.CIR.0000140263.20897.42. - DOI - PubMed
    1. Weng LC, Preis SR, Hulme OL, Larson MG, Choi SH, Wang B, Trinquart L, McManus DD, Staerk L, Lin H, et al. Genetic predisposition, clinical risk factor burden, and lifetime risk of atrial fibrillation. Circulation. 2018;137(10):1027–1038. doi: 10.1161/CIRCULATIONAHA.117.031431. - DOI - PMC - PubMed
    1. Mou L, Norby FL, Chen LY, O’Neal WT, Lewis TT, Loehr LR, Soliman EZ, Alonso A. Lifetime risk of atrial fibrillation by race and socioeconomic status: ARIC Study (Atherosclerosis Risk in Communities) Circ Arrhythm Electrophysiol. 2018;11(7):e006350. doi: 10.1161/CIRCEP.118.006350. - DOI - PMC - PubMed
    1. Colilla S, Crow A, Petkun W, Singer DE, Simon T, Liu X. Estimates of current and future incidence and prevalence of atrial fibrillation in the U.S. adult population. Am J Cardiol. 2013;112(8):1142–1147. doi: 10.1016/j.amjcard.2013.05.063. - DOI - PubMed
    1. Chugh SS, Havmoeller R, Narayanan K, Singh D, Rienstra M, Benjamin EJ, Gillum RF, Kim YH, McAnulty JH, Jr, Zheng ZJ, et al. Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 Study. Circulation. 2014;129(8):837–847. doi: 10.1161/CIRCULATIONAHA.113.005119. - DOI - PMC - PubMed

Publication types

Substances