Network Localization of Alien Limb in Patients with Corticobasal Syndrome
- PMID: 32935385
- DOI: 10.1002/ana.25901
Network Localization of Alien Limb in Patients with Corticobasal Syndrome
Abstract
Objective: Perirolandic atrophy occurs in corticobasal syndrome (CBS) but is not specific versus progressive supranuclear palsy (PSP). There is heterogeneity in the locations of atrophy outside the perirolandic cortex and it remains unknown why atrophy in different locations would cause the same CBS-specific symptoms. In prior work, we used a wiring diagram of the brain called the human connectome to localize lesion-induced disorders to symptom-specific brain networks. Here, we use a similar technique termed "atrophy network mapping" to localize single-subject atrophy maps to symptom-specific brain networks.
Methods: Single-subject atrophy maps were generated by comparing cortical thickness in patients with CBS versus controls. Next, we performed seed-based functional connectivity using a large normative connectome to determine brain regions functionally connected to each patient's atrophied locations.
Results: Patients with CBS had perirolandic atrophy versus controls at the group level, but locations of atrophy in CBS were heterogeneous outside of the perirolandic cortex at the single-subject level (mean spatial correlation = 0.04). In contrast, atrophy occurred in locations functionally connected to the perirolandic cortex in all patients with CBS (spatial correlation = 0.66). Compared with PSP, patients with CBS had atrophy connected to a network of higher-order sensorimotor regions beyond perirolandic cortex, matching a CBS atrophy network from a recent meta-analysis. Finally, atrophy network mapping identified a symptom-specific network for alien limb, matching a lesion-induced alien limb network and a network associated with agency in healthy subjects.
Interpretation: We identified a syndrome-specific network for CBS and symptom-specific network for alien limb using single-subject atrophy maps and the human connectome. ANN NEUROL 2020;88:1118-1131.
© 2020 American Neurological Association.
References
-
- Armstrong MJ, Litvan I, Lang AE, et al. Criteria for the diagnosis of corticobasal degeneration. Neurology 2013;80:496-503. www.neurology.org.
-
- Lee SE, Rabinovici GD, Mayo MC, et al. Clinicopathological correlations in corticobasal degeneration. Ann Neurol 2011;70:327-340. http://www.ncbi.nlm.nih.gov/pubmed/21823158.
-
- Albrecht F, Bisenius S, Morales Schaack R, et al. Disentangling the neural correlates of corticobasal syndrome and corticobasal degeneration with systematic and quantitative ALE meta-analyses. Parkinson Dis 2017;3:1-7. https://doi.org/10.1038/s41531-017-0012-6.
-
- Dutt S, Binney RJ, Heuer HW, et al. Progression of brain atrophy in PSP and CBS over 6 months and 1 year. Neurology 2016;87:2016-2025. https://doi.org/10.1212/WNL.0000000000003305.
-
- Boxer AL, Geschwind MD, Belfor N, et al. Patterns of brain atrophy that differentiate corticobasal degeneration syndrome from progressive supranuclear palsy. Arch Neurol 2006;63:81-86.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous
