Applications of artificial intelligence (AI) in diagnostic radiology: a technography study
- PMID: 32945967
- PMCID: PMC7979626
- DOI: 10.1007/s00330-020-07230-9
Applications of artificial intelligence (AI) in diagnostic radiology: a technography study
Abstract
Objectives: Why is there a major gap between the promises of AI and its applications in the domain of diagnostic radiology? To answer this question, we systematically review and critically analyze the AI applications in the radiology domain.
Methods: We systematically analyzed these applications based on their focal modality and anatomic region as well as their stage of development, technical infrastructure, and approval.
Results: We identified 269 AI applications in the diagnostic radiology domain, offered by 99 companies. We show that AI applications are primarily narrow in terms of tasks, modality, and anatomic region. A majority of the available AI functionalities focus on supporting the "perception" and "reasoning" in the radiology workflow.
Conclusions: Thereby, we contribute by (1) offering a systematic framework for analyzing and mapping the technological developments in the diagnostic radiology domain, (2) providing empirical evidence regarding the landscape of AI applications, and (3) offering insights into the current state of AI applications. Accordingly, we discuss the potential impacts of AI applications on the radiology work and we highlight future possibilities for developing these applications.
Key points: • Many AI applications are introduced to the radiology domain and their number and diversity grow very fast. • Most of the AI applications are narrow in terms of modality, body part, and pathology. • A lot of applications focus on supporting "perception" and "reasoning" tasks.
Keywords: Artificial intelligence; Forecasting; Radiologists; Radiology; Workflow.
Conflict of interest statement
The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.
Figures





References
-
- Islam H, Shah H (2019) Blog: RSNA 2019 AI round-up. https://hardianhealth.com/blog/rsna19
-
- Geels FW. The dynamics of transitions in socio-technical systems: a multi-level analysis of the transition pathway from horse-drawn carriages to automobiles (1860-1930) Tech Anal Strat Manag. 2005;17:445–476. doi: 10.1080/09537320500357319. - DOI
MeSH terms
LinkOut - more resources
Full Text Sources
Miscellaneous