Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Oct 26;60(10):4691-4701.
doi: 10.1021/acs.jcim.0c00841. Epub 2020 Sep 30.

IAMPE: NMR-Assisted Computational Prediction of Antimicrobial Peptides

Affiliations

IAMPE: NMR-Assisted Computational Prediction of Antimicrobial Peptides

Kaveh Kavousi et al. J Chem Inf Model. .

Abstract

Antimicrobial peptides (AMPs) are at the focus of attention due to their therapeutic importance and developing computational tools for the identification of efficient antibiotics from the primary structure. Here, we utilized the 13CNMR spectral of amino acids and clustered them into various groups. These clusters were used to build feature vectors for the AMP sequences based on the composition, transition, and distribution of cluster members. These features, along with the physicochemical properties of AMPs were exploited to learn computational models to predict active AMPs solely from their sequences. Naïve Bayes (NB), k-nearest neighbors (KNN), support-vector machine (SVM), random forest (RF), and eXtreme Gradient Boosting (XGBoost) were employed to build the classification system using the collected AMP datasets from the CAMP, LAMP, ADAM, and AntiBP databases. Our results were validated and compared with the CAMP and ADAM prediction systems and indicated that the synergistic combination of the 13CNMR features with the physicochemical descriptors enables the proposed ensemble mechanism to improve the prediction performance of active AMP sequences. Our web-based AMP prediction platform, IAMPE, is available at http://cbb1.ut.ac.ir/.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources