Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Nov 16;30(22):4483-4490.e4.
doi: 10.1016/j.cub.2020.08.051. Epub 2020 Sep 17.

The DASH-type Cryptochrome from the Fungus Mucor circinelloides Is a Canonical CPD-Photolyase

Affiliations
Free article

The DASH-type Cryptochrome from the Fungus Mucor circinelloides Is a Canonical CPD-Photolyase

Eusebio Navarro et al. Curr Biol. .
Free article

Abstract

Cryptochromes and photolyases are blue-light photoreceptors and DNA-repair enzymes, respectively, with conserved domains and a common ancestry [1-3]. Photolyases use UV-A and blue light to repair lesions in DNA caused by UV radiation, photoreactivation, although cryptochromes have specialized roles ranging from the regulation of photomorphogenesis in plants, to clock function in animals [4-7]. A group of cryptochromes (cry-DASH) [8] from bacteria, plants, and animals has been shown to repair in vitro cyclobutane pyrimidine dimers (CPDs) in single-stranded DNA (ssDNA), but not in double-stranded DNA (dsDNA) [9]. Cry-DASH are evolutionary related to 6-4 photolyases and animal cryptochromes, but their biological role has remained elusive. The analysis of several crystal structures of members of the cryptochrome and photolyase family (CPF) allowed the identification of structural and functional similarities between photolyases and cryptochromes [8, 10-12] and led to the proposal that the absence of dsDNA repair activity in cry-DASH is due to the lack of an efficient flipping of the lesion into the catalytic pocket [13]. However, in the fungus Phycomyces blakesleeanus, cry-DASH has been shown to be capable of repairing CPD lesions in dsDNA as a bona fide photolyase [14]. Here, we show that cry-DASH of a related fungus, Mucor circinelloides, not only repairs CPDs in dsDNA in vitro but is the enzyme responsible for photoreactivation in vivo. A structural model of the M. circinelloides cry-DASH suggests that the capacity to repair lesions in dsDNA is an evolutionary adaptation from an ancestor that only had the capacity to repair lesions in ssDNA.

Keywords: DNA repair; Mucor; cryptochrome; cyclobutane pyrimidine dimer; photolyase.

PubMed Disclaimer

Conflict of interest statement

Declaration of Interests The authors declare no competing interests.

Similar articles

Cited by

Publication types

Supplementary concepts

LinkOut - more resources