Altered Envelope Structure and Nanomechanical Properties of a C-Terminal Protease A-Deficient Rhizobium leguminosarum
- PMID: 32947797
- PMCID: PMC7564917
- DOI: 10.3390/microorganisms8091421
Altered Envelope Structure and Nanomechanical Properties of a C-Terminal Protease A-Deficient Rhizobium leguminosarum
Abstract
(1) Background: Many factors can impact bacterial mechanical properties, which play an important role in survival and adaptation. This study characterizes the ultrastructural phenotype, elastic and viscoelastic properties of Rhizobium leguminosarum bv. viciae 3841 and the C-terminal protease A (ctpA) null mutant strain predicted to have a compromised cell envelope; (2) Methods: To probe the cell envelope, we used transmission electron microscopy (TEM), high performance liquid chromatography (HPLC), mass spectrometry (MS), atomic force microscopy (AFM) force spectroscopy, and time-dependent AFM creep deformation; (3) Results: TEM images show a compromised and often detached outer membrane for the ctpA mutant. Muropeptide characterization by HPLC and MS showed an increase in peptidoglycan dimeric peptide (GlcNAc-MurNAc-Ala-Glu-meso-DAP-Ala-meso-DAP-Glu-Ala-MurNAc-GlcNAc) for the ctpA mutant, indicative of increased crosslinking. The ctpA mutant had significantly larger spring constants than wild type under all hydrated conditions, attributable to more highly crosslinked peptidoglycan. Time-dependent AFM creep deformation for both the wild type and ctpA mutant was indicative of a viscoelastic cell envelope, with best fit to the four-element Burgers model and generating values for viscoelastic parameters k1, k2, η1, and η2; (4) Conclusions: The viscoelastic response of the ctpA mutant is consistent with both its compromised outer membrane (TEM) and fortified peptidoglycan layer (HPLC/MS).
Keywords: C-terminal protease; Rhizobium leguminosarum; atomic force microscopy; cell envelope; force spectroscopy; viscoelasticity.
Conflict of interest statement
The authors declare no conflict of interest.
Figures




Similar articles
-
Atomic force microscopy of a ctpA mutant in Rhizobium leguminosarum reveals surface defects linking CtpA function to biofilm formation.Microbiology (Reading). 2011 Nov;157(Pt 11):3049-3058. doi: 10.1099/mic.0.051045-0. Epub 2011 Aug 18. Microbiology (Reading). 2011. PMID: 21852352
-
Metabolic Adaptation of a C-Terminal Protease A-Deficient Rhizobium leguminosarum in Response to Loss of Nutrient Transport.Front Microbiol. 2018 Jan 4;8:2617. doi: 10.3389/fmicb.2017.02617. eCollection 2017. Front Microbiol. 2018. PMID: 29354107 Free PMC article.
-
Mutagenesis of the carboxy terminal protease CtpA decreases desiccation tolerance in Rhizobium leguminosarum.FEMS Microbiol Lett. 2007 Jul;272(1):65-74. doi: 10.1111/j.1574-6968.2007.00735.x. Epub 2007 Apr 24. FEMS Microbiol Lett. 2007. PMID: 17456188
-
The Regulatory Protein RosR Affects Rhizobium leguminosarum bv. trifolii Protein Profiles, Cell Surface Properties, and Symbiosis with Clover.Front Microbiol. 2016 Aug 23;7:1302. doi: 10.3389/fmicb.2016.01302. eCollection 2016. Front Microbiol. 2016. PMID: 27602024 Free PMC article.
-
A Proteolytic Complex Targets Multiple Cell Wall Hydrolases in Pseudomonas aeruginosa.mBio. 2018 Jul 17;9(4):e00972-18. doi: 10.1128/mBio.00972-18. mBio. 2018. PMID: 30018106 Free PMC article.
Cited by
-
Carboxy-Terminal Processing Protease Controls Production of Outer Membrane Vesicles and Biofilm in Acinetobacter baumannii.Microorganisms. 2021 Jun 20;9(6):1336. doi: 10.3390/microorganisms9061336. Microorganisms. 2021. PMID: 34203028 Free PMC article.
-
Bacterial Carboxyl-Terminal Processing Proteases Play Critical Roles in the Cell Envelope and Beyond.J Bacteriol. 2022 Apr 19;204(4):e0062821. doi: 10.1128/jb.00628-21. Epub 2022 Mar 16. J Bacteriol. 2022. PMID: 35293777 Free PMC article. Review.
References
-
- Findley W.N., Lai J.S., Onaran K. Creep and Relaxation of Nonlinear Viscoelastic Materials with an Introduction to Linear Viscoelasticity. Dover Publications Inc.; New York, NY, USA: 1989.
-
- Vadillo-Rodriguez V., Dutcher J.R. Viscoelasticity of the cell wall. Soft Matter. 2011;7:4101–4110. doi: 10.1039/c0sm01054e. - DOI
-
- Bhat S.V., Jun D., Paul B.C., Dahms T.E.S. Viscoelasticity in Biological Systems: A Special Focus on Microbes. In: de Vicente J., editor. Viscoelasticity—From Theory to Biological Applications. Volume 6. InTech; Rijeka, Croatia: 2012. pp. 123–156.
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous