Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Jun 5;262(16):7927-31.

Acetoacetyl-acyl carrier protein synthase, a potential regulator of fatty acid biosynthesis in bacteria

  • PMID: 3294837
Free article

Acetoacetyl-acyl carrier protein synthase, a potential regulator of fatty acid biosynthesis in bacteria

S Jackowski et al. J Biol Chem. .
Free article

Abstract

The first condensation reaction in the fatty acid biosynthetic pathway in Escherichia coli was rate-limiting as judged by analysis of the relative pool sizes of acyl carrier protein (ACP) thioester intermediates in vivo. Comparable concentrations of acetyl-ACP, malonyl-ACP, and nonesterified ACP were present during logarithmic growth, whereas long-chain acyl-ACP comprised a minor fraction of the total ACP pool. The antibiotic cerulenin was used to irreversibly inhibit both beta-ketoacyl-ACP synthases I and II. However, acyl-ACP formation in vivo was not blocked by this antibiotic, and short-chain (4-8-carbon) acyl-ACPs increased to 60% of the total ACP pool in cerulenin-treated cells. These data suggested that existence of a cerulenin-resistant condensing enzyme that was capable of catalyzing the initial steps in chain elongation. A unique enzymatic activity, acetoacetyl-ACP synthase, that specifically catalyzed the condensation of malonyl-ACP and acetyl-ACP was detected in E. coli cell extracts. Acetoacetyl-ACP synthase activity was not inhibited by cerulenin and was present in extracts prepared from a double mutant harboring genetic lesions in beta-ketoacyl-ACP synthases I and II (fabB20 fabF3). These data point to the condensation of malonyl-ACP and acetyl-ACP as the rate-controlling reaction in fatty acid biosynthesis and implicate acetoacetyl-ACP synthase as the pacemaker of fatty acid production in organisms and organelles that possess dissociated (Type II) fatty acid synthase systems.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources