Coronary microvascular dysfunction is associated with exertional haemodynamic abnormalities in patients with heart failure with preserved ejection fraction
- PMID: 32949186
- DOI: 10.1002/ejhf.2010
Coronary microvascular dysfunction is associated with exertional haemodynamic abnormalities in patients with heart failure with preserved ejection fraction
Abstract
Aims: This study uniquely explored the relationship between coronary microvascular function and exercise haemodynamics using concurrent invasive testing.
Methods and results: Fifty-one consecutive patients with unexplained cardiac exertion symptoms, non-obstructive coronary artery disease and normal left ventricular ejection fraction (>50%) underwent haemodynamic exercise assessment and concurrent coronary reactivity testing. Heart failure with preserved ejection fraction (HFpEF) was defined as a pulmonary arterial wedge pressure (PAWP) ≥15 mmHg at rest and/or ≥25 mmHg at peak exercise. Endothelium-independent coronary microvascular dysfunction (CMD) was defined as a coronary flow reserve (CFR) ≤2.5, while endothelium-dependent CMD was defined as ≤50% increase in coronary blood flow (CBF) in response to intracoronary acetylcholine infusions. Patients with HFpEF (n = 22) had significantly lower CFR (2.5 ± 0.6 vs. 3.2 ± 0.7; P = 0.0003) and median %CBF increase in response to intracoronary acetylcholine [1 (-35; 34) vs. 64 (-4; 133); P = 0.002] compared to patients without HFpEF (n = 29). PAWP was significantly higher in patients with endothelium-independent CMD compared to controls during both rest and exercise. This significant elevation was only present during exercise in patients with endothelium-dependent CMD compared to controls. CFR had significant inverse correlations with PAWP at rest (r = -0.31; P = 0.03) and peak exercise (r = -0.47, P = 0.001). CFR also had positive correlations with maximal exercise capacity (in W/kg) (r = 0.33, P = 0.02).
Conclusions: Coronary microvascular function is inversely associated with filling pressures, particularly during exercise. Both types of CMD are associated with higher filling pressures at peak exercise. These findings underscore the potential mechanism and therapeutic target for CMD and HFpEF.
Keywords: Exercise haemodynamics; Heart failure with preserved ejection fraction; Microvascular dysfunction.
© 2020 European Society of Cardiology.
Comment in
-
Coronary microvascular dysfunction in heart failure with preserved ejection fraction: not the end but the end of the beginning.Eur J Heart Fail. 2021 May;23(5):773-775. doi: 10.1002/ejhf.2069. Epub 2020 Dec 16. Eur J Heart Fail. 2021. PMID: 33247863 No abstract available.
References
-
- Redfield MM. Heart failure with preserved ejection fraction. N Engl J Med 2016;375:1868-1877.
-
- Kato S, Saito N, Kirigaya H, Gyotoku D, Iinuma N, Kusakawa Y, Iguchi K, Nakachi T, Fukui K, Futaki M, Iwasawa T, Kimura K, Umemura S. Impairment of coronary flow reserve evaluated by phase contrast cine-magnetic resonance imaging in patients with heart failure with preserved ejection fraction. J Am Heart Assoc 2016;5:e002649.
-
- Mohammed SF, Hussain S, Mirzoyev SA, Edwards WD, Maleszewski JJ, Redfield MM. Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation 2015;131:550-559.
-
- Shah SJ, Lam CS, Svedlund S, Saraste A, Hage C, Tan RS, Beussink-Nelson L, Ljung Faxen U, Fermer ML, Broberg MA, Gan LM, Lund LH. Prevalence and correlates of coronary microvascular dysfunction in heart failure with preserved ejection fraction: PROMIS-HFpEF. Eur Heart J 2018;39:3439-3450.
-
- Taqueti VR, Solomon SD, Shah AM, Desai AS, Groarke JD, Osborne MT, Hainer J, Bibbo CF, Dorbala S, Blankstein R, Di Carli MF. Coronary microvascular dysfunction and future risk of heart failure with preserved ejection fraction. Eur Heart J 2018;39:840-849.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
