Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr;171(4):638-652.
doi: 10.1111/ppl.13214. Epub 2020 Oct 2.

The role of solute transporters in aluminum toxicity and tolerance

Affiliations

The role of solute transporters in aluminum toxicity and tolerance

Debojyoti Kar et al. Physiol Plant. 2021 Apr.

Abstract

The prevalence of aluminum ions (Al3+ ) under acidic soil conditions inhibits primary root elongation and hinders plant growth and productivity. Al3+ alters the membrane potential, displaces critical ions in the apoplast and disrupts intracellular ionic concentrations by targeting membrane-localized solute transporters. Here, we provide an overview of how Al3+ affects the activities of several solute transporters especially in the root. High Al3+ level impairs the functions of potassium (K+ ), calcium (Ca2+ ), magnesium (Mg2+ ), nitrate (NO3 - ) and ammonium (NH4 + ) transporters. We further discuss the role of some key transporters in mediating Al tolerance either by exclusion or sequestration. Anion channels responsible for organic acid efflux modulate the sensitivity to Al3+ . The ALUMINUM ACTIVATED MALATE TRANSPORTER (ALMT) and MULTIDRUG AND TOXIC COMPOUND EXTRUSION (MATE) family of transporters exude malate and citrate, respectively, to the rhizosphere to alleviate Al toxicity by Al exclusion. The ABC transporters, aquaporins and H+ -ATPases perform vacuolar sequestration of Al3+ , leading to aluminum tolerance in plants. Targeting these solute transporters in crop plants can help generating aluminum-tolerant crops in future.

PubMed Disclaimer

References

    1. Ahn SJ, Rengel Z, Matsumoto H (2004) Aluminum-induced plasma membrane surface potential and H+-ATPase activity in near-isogenic wheat lines differing in tolerance to aluminum. New Phytol 162: 71-79
    1. Ahn SJ, Sivaguru M, Chung GC, Rengel Z, Matsumoto H (2002) Aluminium-induced growth inhibition is associated with impaired efflux and influx of H+ across the plasma membrane in root apices of squash (Cucurbita pepo). J Exp Bot 53: 1959-1966
    1. Ahn SJ, Sivaguru M, Osawa H, Chung GC, Matsumoto H (2001) Aluminum inhibits the H+-ATPase activity by permanently altering the plasma membrane surface potentials in squash roots. Plant Physiol 126: 1381-1390
    1. Arenhart RA, Schunemann M, Bucker Neto L, Margis R, Wang ZY, Margis-Pinheiro M (2016) Rice ASR1 and ASR5 are complementary transcription factors regulating aluminium responsive genes. Plant Cell Environ 39: 645-651
    1. Blamey FPC, Edmeades DC, Wheeler DM (1990) Role of root cation-exchange capacity in differential aluminum tolerance of lotus species. J Plant Nutr 13: 729-744

LinkOut - more resources