Real-time compaction of nanoconfined DNA by an intrinsically disordered macromolecular counterion
- PMID: 32951838
- PMCID: PMC7577930
- DOI: 10.1016/j.bbrc.2020.06.051
Real-time compaction of nanoconfined DNA by an intrinsically disordered macromolecular counterion
Abstract
We demonstrate how a recently developed nanofluidic device can be used to study protein-induced compaction of genome-length DNA freely suspended in solution. The protein we use in this study is the hepatitis C virus core protein (HCVcp), which is a positively charged, intrinsically disordered protein. Using nanofluidic devices in combination with fluorescence microscopy, we observe that protein-induced compaction preferentially begins at the ends of linear DNA. This observation would be difficult to make with many other single-molecule techniques, which generally require the DNA ends to be anchored to a substrate. We also demonstrate that this protein-induced compaction is reversible and can be dynamically modulated by exposing the confined DNA molecules to solutions containing either HCVcp (to promote compaction) or Proteinase K (to disassemble the compact nucleo-protein complex). Although the natural binding partner for HCVcp is genomic viral RNA, the general biophysical principles governing protein-induced compaction of DNA are likely relevant for a broad range of nucleic acid-binding proteins and their targets.
Keywords: DNA condensation and compaction; Hepatitis C virus core protein; Intrinsically disordered protein; Macromolecular counterion; Nanofluidic device; Protein-DNA interaction.
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare no conflicts of interest.
Figures




Similar articles
-
Disordered RNA chaperones can enhance nucleic acid folding via local charge screening.Nat Commun. 2019 Jun 5;10(1):2453. doi: 10.1038/s41467-019-10356-0. Nat Commun. 2019. PMID: 31165735 Free PMC article.
-
Intrinsic disorder mediates hepatitis C virus core-host cell protein interactions.Protein Sci. 2015 Feb;24(2):221-35. doi: 10.1002/pro.2608. Epub 2014 Dec 31. Protein Sci. 2015. PMID: 25424537 Free PMC article.
-
Conformational Plasticity of Hepatitis C Virus Core Protein Enables RNA-Induced Formation of Nucleocapsid-like Particles.J Mol Biol. 2018 Aug 3;430(16):2453-2467. doi: 10.1016/j.jmb.2017.10.010. Epub 2017 Oct 16. J Mol Biol. 2018. PMID: 29045818
-
Exploring DNA-protein interactions on the single DNA molecule level using nanofluidic tools.Integr Biol (Camb). 2017 Aug 14;9(8):650-661. doi: 10.1039/c7ib00085e. Integr Biol (Camb). 2017. PMID: 28660960 Review.
-
Effects of Intrinsic and Extrinsic Factors on Aggregation of Physiologically Important Intrinsically Disordered Proteins.Int Rev Cell Mol Biol. 2017;329:145-185. doi: 10.1016/bs.ircmb.2016.08.011. Epub 2016 Oct 22. Int Rev Cell Mol Biol. 2017. PMID: 28109327 Review.
Cited by
-
Apolar chemical environments compact unfolded RNAs and can promote folding.Biophys Rep (N Y). 2021 Sep 8;1(1):100004. doi: 10.1016/j.bpr.2021.100004. Epub 2021 Jul 21. Biophys Rep (N Y). 2021. PMID: 35382036 Free PMC article.
-
The Emergence of Nanofluidics for Single-Biomolecule Manipulation and Sensing.Anal Chem. 2025 Apr 29;97(16):8641-8653. doi: 10.1021/acs.analchem.4c06684. Epub 2025 Apr 17. Anal Chem. 2025. PMID: 40244645 Free PMC article. Review.
-
The HIV-1 nucleocapsid chaperone protein forms locally compacted globules on long double-stranded DNA.Nucleic Acids Res. 2021 May 7;49(8):4550-4563. doi: 10.1093/nar/gkab236. Nucleic Acids Res. 2021. PMID: 33872352 Free PMC article.
-
Assembly path dependence of telomeric DNA compaction by TRF1, TIN2, and SA1.Biophys J. 2023 May 16;122(10):1822-1832. doi: 10.1016/j.bpj.2023.04.014. Epub 2023 Apr 20. Biophys J. 2023. PMID: 37081787 Free PMC article.
-
Biological Amyloids Chemically Damage DNA.ACS Chem Neurosci. 2025 Feb 5;16(3):355-364. doi: 10.1021/acschemneuro.4c00461. Epub 2025 Jan 9. ACS Chem Neurosci. 2025. PMID: 39782739 Free PMC article.
References
-
- De Vlaminck I, Dekker C, Recent advances in magnetic tweezers, Annu. Rev. Biophys 41 (2012) 453–472. - PubMed
-
- Collins BE, Ye LF, Duzdevich D, Greene EC, DNA curtains, in: Methods Cell Biol, Academic Press Inc., 2014, pp. 217–234. - PubMed
-
- Persson F, Tegenfeldt JO, DNA in nanochannelsddirectly visualizing genomic information, Chem. Soc. Rev 39 (2010) 985. - PubMed
-
- Frykholm K, Nyberg LK, Westerlund F, Exploring DNAeprotein interactions on the single DNA molecule level using nanofluidic tools, Integr. Biol 9 (2017) 650–661. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources