Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Dec 1:169:112588.
doi: 10.1016/j.bios.2020.112588. Epub 2020 Sep 12.

Intracellular recording of cardiomyocyte action potentials by nanobranched microelectrode array

Affiliations

Intracellular recording of cardiomyocyte action potentials by nanobranched microelectrode array

Ning Hu et al. Biosens Bioelectron. .

Abstract

Electrophysiological study that records the action potential of cardiomyocyte served as excellent tool to explore cardiology and neuroscience, disease investigation and pharmacological screening. Advances of micro/nanotechnologies promote the development of three-dimensional (3D) nanodevices to record high-quality intracellular recordings by various perforation approaches of cells, however, the complicated fabrication processes limited their large-scale manufacture. In this work, a unique nanobranched microelectrode array (NBMEA) platform is developed to achieve high-quality intracellular recording of cultured cardiomyocytes in a minimally invasive manner. The NBMEA is consisting of high aspect ratio conductive nanobranches fabricated on patterned microelectrodes combining hydrothermal growth and standard microfabrication. The 3D structure of nanobranches enables the electrode to form tight coupling with cardiomyocytes to achieve the low voltage cell electroporation and high-quality intracellular recording. The recorded intracellular action potentials of cardiomyocytes by NBMEA exhibited significant enhancement on amplitude (~5 mV), signal-to-noise ratio (SNR) (~67.47 dB), recording duration (up to 105 min), and recording yield (69.5 ± 17.8%). This NBMEA platform is a promising and powerful tool for electrophysiology that opens up new opportunities for high-quality and stable intracellular recording of cardiomyocytes.

Keywords: Cardiomyocytes; Intracellular recording; Microelectrode arrays; Nanobranch biointerface; Nanobranch electroporation.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources