Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Oct;12(10):898-905.
doi: 10.1038/s41557-020-0541-1. Epub 2020 Sep 23.

Synthesis of azetidines via visible-light-mediated intermolecular [2+2] photocycloadditions

Affiliations

Synthesis of azetidines via visible-light-mediated intermolecular [2+2] photocycloadditions

Marc R Becker et al. Nat Chem. 2020 Oct.

Abstract

Intermolecular [2+2] photocycloadditions represent a powerful method for the synthesis of highly strained, four-membered rings. Although this approach is commonly employed for the synthesis of oxetanes and cyclobutanes, the synthesis of azetidines via intermolecular aza Paternò-Büchi reactions remains highly underdeveloped. Here we report a visible-light-mediated intermolecular aza Paternò-Büchi reaction that utilizes the unique triplet state reactivity of oximes, specifically 2-isoxazoline-3-carboxylates. The reactivity of this class of oximes can be harnessed via the triplet energy transfer from a commercially available iridium photocatalyst and allows for [2+2] cycloaddition with a wide range of alkenes. This approach is characterized by its operational simplicity, mild conditions and broad scope, and allows for the synthesis of highly functionalized azetidines from readily available precursors. Importantly, the accessible azetidine products can be readily converted into free, unprotected azetidines, which represents a new approach to access these highly desirable synthetic targets.

PubMed Disclaimer

Comment in

Similar articles

Cited by

References

    1. Fish, P. V., Brown, A. D., Evrard, E. & Roberts, L. R. 7-Sulfonamido-3-benzazepines as potent and selective 5-HT2C receptor agonists: hit-to-lead optimization. Bioorg. Med. Chem. Lett. 19, 1871–1875 (2009). - PubMed
    1. Brown, A. et al. Triazole oxytocin antagonists: identification of an aryloxyazetidine replacement for a biaryl substituent. Bioorg. Med. Chem. Lett. 20, 516–520 (2010). - PubMed
    1. Lowe, J. T. et al. Synthesis and profiling of a diverse collection of azetidine-based scaffolds for the development of CNS-focused lead-like libraries. J. Org. Chem. 77, 7187–7211 (2012). - PubMed - PMC
    1. Maetani, M. et al. Synthesis of a bicyclic azetidine with in vivo antimalarial activity enabled by stereospecific, directed C(sp3)–H arylation. J. Am. Chem. Soc. 139, 11300–11306 (2017). - PubMed - PMC
    1. Kerns, E. H. & Di, L. Drug-Like Properties: Concepts, Structure Design and Methods 1st edn 137–168 (Academic, 2008).

Publication types

LinkOut - more resources