[National surveillance of clinical isolates of Enterococcus faecalis resistant to linezolid carrying the optrA gene in Colombia, 2014-2019]
- PMID: 32968369
- PMCID: PMC7505479
- DOI: 10.26633/RPSP.2020.104
[National surveillance of clinical isolates of Enterococcus faecalis resistant to linezolid carrying the optrA gene in Colombia, 2014-2019]
Abstract
Objective: To describe the epidemiological, phenotypical and genetic characteristics of clinical isolates carrying the optrA gene identified in antimicrobial resistance surveillance by the laboratory of the National Institute of Health of Colombia.
Methods: Between October 2014 and February 2019, 25 isolates of Enterococcus spp. resistant to linezolid were received. Antimicrobial identification and sensitivity were determined using Vitek 2 and the minimum inhibitory concentration (MIC) to linezolid was established with E-test. The optrA gene was detected by PCR, and the genetic diversity of optrA-positive isolates was tested with Diversilab®. Six isolates were selected to perform whole genome sequencing.
Results: The optrA gene was confirmed in 23/25 isolates of E. faecalis from seven departments in Colombia. The isolates presented a MIC to linezolid between 8 and >256µg/mL. Typing by Diversilab® showed a wide genetic variability. All the isolates analyzed by whole genome sequencing showed the resistance genes fexA, ermB, lsaA, tet(M), tet(L) and dfrG in addition to optrA and were negative for other mechanisms of resistance to linezolid. Three type sequences and three optrA variants were identified: ST16 (optrA-2), ST476 (optrA-5) and ST618 (optrA-6). The genetic environment of the optrA-2 (ST16) isolates presented the impB, fex, optrA segment, associated with plasmid, while in two isolates (optrA-6 and optrA-5) the transferable chromosomal element Tn6674-like was found.
Conclusion: OptrA-positive clinical isolates present a high genetic diversity, with different optrA clones and variants related to two types of structures and different mobile genetic elements.
Objetivo.: Describir las características epidemiológicas, fenotípicas y genéticas de aislamientos clínicos portadores de optrA identificados en la vigilancia de resistencia antimicrobiana por el laboratorio del Instituto Nacional de Salud de Colombia.
Métodos.: Entre octubre de 2014 y febrero 2019, se recibieron 25 aislamientos de Enterococcus spp. resistentes al linezolid. La identificación y sensibilidad antimicrobiana se determinó con Vitek 2 y la concentración inhibitoria mínima (CIM) al linezolid se estableció con E-test. El gen optrA se detectó mediante PCR. La diversidad genética de aislamientos positivos para optrA se analizó con Diversilab®. Se seleccionaron seis aislamientos para llevar a cabo la secuenciación del genoma completo.
Resultados.: Se confirmó el gen optrA en 23/25 aislamientos de E. faecalis de siete departamentos de Colombia. Los aislamientos presentaron una CIM al linezolid entre 8 y >256µg/mL. La tipificación por Diversilab® indicó una amplia variabilidad genética. Todos los aislamientos analizados mediante secuenciación del genoma completo, presentaron genes de resistencia fexA, ermB, lsaA, tet(M), tet(L) y dfrG además de optrA y fueron negativos para otros mecanismos de resistencia al linezolid. Se identificaron tres secuencias tipos y tres variantes de optrA: ST16 (optrA-2), ST476 (optrA-5) y ST618 (optrA-6). El entorno genético de los aislamientos optrA-2 (ST16) presentó el segmento impB, fex, optrA, asociado a plásmido, mientras que en dos aislamientos (optrA-6 y optrA-5) se encontró el elemento cromosómico transferible Tn6674-like.
Conclusión.: Los aislamientos clínicos positivos para optrA presentan una alta diversidad genética, con diferentes clones y variantes de optrA relacionados con dos tipos de estructuras y diferentes elementos genéticos móviles.
Keywords: Colombia; Enterococcus faecalis; drug resistance, microbial; linezolid.
Figures



Similar articles
-
From farm to fork: identical clones and Tn6674-like elements in linezolid-resistant Enterococcus faecalis from food-producing animals and retail meat.J Antimicrob Chemother. 2020 Jan 1;75(1):30-35. doi: 10.1093/jac/dkz419. J Antimicrob Chemother. 2020. PMID: 31605129
-
Linezolid-resistant Enterococcus faecalis ST16 harbouring optrA on a Tn6674-like element isolated from surface water.J Glob Antimicrob Resist. 2021 Jun;25:89-92. doi: 10.1016/j.jgar.2021.02.029. Epub 2021 Mar 8. J Glob Antimicrob Resist. 2021. PMID: 33705941
-
Comparative genomics of global optrA-carrying Enterococcus faecalis uncovers a common chromosomal hotspot for optrA acquisition within a diversity of core and accessory genomes.Microb Genom. 2020 Jun;6(6):e000350. doi: 10.1099/mgen.0.000350. Epub 2020 Mar 9. Microb Genom. 2020. PMID: 32149599 Free PMC article.
-
Global spread of the linezolid-resistant Enterococcus faecalis ST476 clonal lineage carrying optrA.J Antimicrob Chemother. 2024 Apr 2;79(4):846-850. doi: 10.1093/jac/dkae039. J Antimicrob Chemother. 2024. PMID: 38366373
-
Distribution of the optrA gene in Enterococcus isolates at a tertiary care hospital in China.J Glob Antimicrob Resist. 2019 Jun;17:180-186. doi: 10.1016/j.jgar.2019.01.001. Epub 2019 Jan 11. J Glob Antimicrob Resist. 2019. PMID: 30641287
Cited by
-
Epidemiology of antimicrobial resistance in bacteria isolated from inpatient and outpatient samples, Ecuador, 2018.Rev Panam Salud Publica. 2023 Apr 19;47:e14. doi: 10.26633/RPSP.2023.14. eCollection 2023. Rev Panam Salud Publica. 2023. PMID: 37082535 Free PMC article.
-
Genomic and clinical characterization of linezolid resistance in Enterococcus species from cancer patients in China.BMC Infect Dis. 2025 Aug 7;25(1):989. doi: 10.1186/s12879-025-11371-x. BMC Infect Dis. 2025. PMID: 40775271 Free PMC article.
-
Mobile Oxazolidinone Resistance Genes in Gram-Positive and Gram-Negative Bacteria.Clin Microbiol Rev. 2021 Jun 16;34(3):e0018820. doi: 10.1128/CMR.00188-20. Epub 2021 Jun 2. Clin Microbiol Rev. 2021. PMID: 34076490 Free PMC article.
References
-
- Long KS, Vester B. Resistance to linezolid caused by modifications at its binding site on the ribosome. Antimicrob Agents Chemother. 2012;56(2):603–612. doi: 10.1128/AAC.05702-11. - DOI - PMC - PubMed
- 1. Long KS, Vester B. Resistance to linezolid caused by modifications at its binding site on the ribosome. Antimicrob Agents Chemother. 2012; 56 (2): 603-612. Doi: 10.1128/AAC.05702-11. - PMC - PubMed
-
- Rincón S, Panesso D, Díaz L, Carvajal LP, Reyes J, Munita JM, et al. Resistencia a antibióticos de última línea en cocos Gram positivos: la era posterior a la vancomicina. Biomedica. 2014;34(1):191–208. doi: 10.1590/S0120-41572014000500022. - DOI - PMC - PubMed
- 2. Rincón S, Panesso D, Díaz L, Carvajal LP, Reyes J, Munita JM et al. Resistencia a antibióticos de última línea en cocos Gram positivos: la era posterior a la vancomicina. Biomedica. 2014; 34 Suppl (1):191-208. Doi: 10.1590/S0120-41572014000500022. - PMC - PubMed
-
- Hashemian SMR, Farhadi T, Ganjparvar M. Linezolid: a review of its properties, function, and use in critical care. Drug Des Devel Ther. 2018;12:1759–1767. doi: 10.2147/DDDT.S164515. eCollection 2018. - DOI - PMC - PubMed
- 3. Hashemian SMR, Farhadi T, Ganjparvar M. Linezolid: a review of its properties, function, and use in critical care. Drug Des Devel Ther. 2018; 12:1759-1767. Doi: 10.2147/DDDT.S164515. eCollection 2018. - PMC - PubMed
-
- Deshpande LM, Castanheira M, Flamm RK, Mendes RE. Evolving oxazolidinone resistance mechanisms in a worldwide collection of enterococcal clinical isolates: results from the SENTRY Antimicrobial Surveillance Program. J Antimicrob Chemother. 2018;73(9):2314–2322. doi: 10.1093/jac/dky188. - DOI - PubMed
- 4. Deshpande LM, Castanheira M, Flamm RK, Mendes RE. Evolving oxazolidinone resistance mechanisms in a worldwide collection of enterococcal clinical isolates: results from the SENTRY Antimicrobial Surveillance Program. J Antimicrob Chemother. 2018; 73 (9); 2314-22. Doi: 10.1093/jac/dky188. - PubMed
-
- Pfaller MA, Mendes RE, Streit JM, Hogan PA, Flamm RK. Five-year summary of in vitro activity and resistance mechanisms of linezolid against clinically important Gram-positive cocci in the United States from the LEADER Surveillance Program (2011 to 2015) Antimicrob Agent Chemother. 2017;61(7):e00609–e00617. doi: 10.1128/AAC.00609-17. - DOI - PMC - PubMed
- 5. Pfaller MA, Mendes RE, Streit JM, Hogan PA, Flamm RK. Five-year summary of in vitro activity and resistance mechanisms of linezolid against clinically important Gram-positive cocci in the United States from the LEADER Surveillance Program (2011 to 2015). Antimicrob Agent Chemother. 2017; 61 (7): e00609-17. Doi 10.1128/AAC.00609-17. - PMC - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Miscellaneous