Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Nov 3;92(21):14432-14443.
doi: 10.1021/acs.analchem.0c02416. Epub 2020 Oct 23.

Distribution and Chemical Speciation of Exogenous Micro- and Nanoparticles in Inflamed Soft Tissue Adjacent to Titanium and Ceramic Dental Implants

Affiliations

Distribution and Chemical Speciation of Exogenous Micro- and Nanoparticles in Inflamed Soft Tissue Adjacent to Titanium and Ceramic Dental Implants

Katja Nelson et al. Anal Chem. .

Abstract

Degradation of the implant surface and particle release/formation as an inflammation catalyst mechanism is an emerging concept in dental medicine that may help explain the pathogenesis of peri-implantitis. The aim of the present study was a synchrotron-based characterization of micro- and nanosized implant-related particles in inflamed human tissues around titanium and ceramic dental implants that exhibited signs of peri-implantitis. Size, distribution, and chemical speciation of the exogenous micro- and nanosized particle content were evaluated using synchrotron μ-X-ray fluorescence spectroscopy (XRF), nano-XRF, and μ-X-ray absorption near-edge structure (XANES). Titanium particles, with variable speciation, were detected in all tissue sections associated with titanium implants. Ceramic particles were found in five out of eight tissue samples associated with ceramic implants. Particles ranged in size from micro- to nanoscale. The local density of both titanium and ceramic particles was calculated to be as high as ∼40 million particles/mm3. μ-XANES identified titanium in predominantly two different chemistries, including metallic and titanium dioxide (TiO2). The findings highlight the propensity for particle accumulation in the inflamed tissues around dental implants and will help in guiding toxicological studies to determine the biological significance of such exposures.

PubMed Disclaimer

LinkOut - more resources