The effect of mercuric salts on the electro-rotation of yeast cells and comparison with a theoretical model
- PMID: 3297146
- DOI: 10.1016/0005-2736(87)90276-8
The effect of mercuric salts on the electro-rotation of yeast cells and comparison with a theoretical model
Abstract
The rotational spectrum of yeast cells changed after pre-treatment of the cells with HgCl2 or Hg(NO3)2 and became indistinguishable from that of ultrasonically produced cell walls. The spectrum of the affected cells contained a peak which could only be explained by attributing a conductivity to the cell walls that was higher than that of the medium. Theoretical models of the rotational response are fully in accord with the experimental spectra. It is shown that the rotation method is capable of measuring even the low cell wall conductivity of yeast cells (which was found to be 33 microS/cm at 10 microS/cm medium conductivity). Knowledge of the spectra allowed a field frequency to be selected at which untreated cells showed no rotation, but at which cells affected by treatment with Hg(II) identified themselves by rotating in the same direction as the field. Calculation of the percentage of cells showing this co-field rotation gave an index (termed the co-field rotation value) of the proportion of the cells that were affected. Using this technique, effects of 25 nmol/l Hg(II) could be demonstrated. In media of low conductivity (10 microS/cm) the change in the rotational spectrum was usually 'all-or-none', whereas at 200 microS/cm a graded Hg(II)-mediated change became apparent. The co-field rotation method showed that the action of small quantities of Hg(II) was still increasing after 3 h of incubation and paralleled the Hg(II)-induced K+ release. A rapid reduction of the effects of Hg(II) was seen when 3-30 mM K+ (or Na+) or when 1 mM Ca2+ were present in the incubation medium, or as the pH was increased. At high incubation cell concentrations the toxic effect of Hg(II) was reduced, apparently due to binding by the cells.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases
Miscellaneous