Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Sep 14;18(3):1559325820951367.
doi: 10.1177/1559325820951367. eCollection 2020 Jul-Sep.

Comparison of 4 Screening Methods for Detecting Fluoropyrimidine Toxicity Risk: Identification of the Most Effective, Cost-Efficient Method to Save Lives

Affiliations

Comparison of 4 Screening Methods for Detecting Fluoropyrimidine Toxicity Risk: Identification of the Most Effective, Cost-Efficient Method to Save Lives

Olivier Capitain et al. Dose Response. .

Abstract

Background: Fluoropyrimidines (FPs) carry around 20% risk of G3-5 toxicity and 0.2-1% risk of death, due to dihydropyrimidine dehydrogenase (DPD) deficiency. Several screening approaches exist for predicting toxicity, however there is ongoing debate over which method is best. This study compares 4 screening approaches.

Method: 472 patients treated for colorectal, head-and-neck, breast, or pancreatic cancers, who had not been tested pre-treatment for FP toxicity risk, were screened using: DPYD genotyping (G); phenotyping via plasma Uracil (U); phenotyping via plasma-dihydrouracil/uracil ratio (UH2/U); and a Multi-Parametric Method (MPM) using genotype, phenotype, and epigenetic data. Performance was compared, particularly the inability to detect at-risk patients (false negatives).

Results: False negative rates for detecting G5 toxicity risk were 51.2%, 19.5%, 9.8% and 2.4%, for G, U, UH2/U and MPM, respectively. False negative rates for detecting G4-5 toxicity risk were 59.8%, 36.1%, 21.3% and 4.7%, respectively. MPM demonstrated significantly (p < 0.001) better prediction performance.

Conclusion: MPM is the most effective method for limiting G4-5 toxicity. Its systematic implementation is cost-effective and significantly improves the risk-benefit ratio of FP-treatment. The use of MPM, rather than G or U testing, would avoid nearly 8,000 FP-related deaths per year globally (500 in France), and spare hundreds of thousands from G4 toxicity.

Keywords: DPD deficiency; comparison; fluoropyrimidines; risk assessment; screening; toxicity.

PubMed Disclaimer

Conflict of interest statement

Declaration of Conflicting Interests: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Similar articles

Cited by

References

    1. Meyerhardt JA, Mayer RJ. Systemic therapy for colorectal cancer. N Engl J Med. 2005;352(5):476–487. - PubMed
    1. Rich TA, Shepard RC, Mosley ST. Four decades of continuing innovation with fluorouracil: current and future approaches to fluorouracil chemoradiation therapy. J Clin Oncol. 2004;22(11):2214–2232. - PubMed
    1. Boisdron-Celle M, Capitain O, Faroux R, et al. Prevention of 5-fluorouracil-induced early severe toxicity by pre-therapeutic dihydropyrimidine dehydrogenase deficiency screening: assessment of a multiparametric approach. Semin Oncol. 2017;44(1):13–23. - PubMed
    1. Takimoto CH. The clinical pharmacology of the oral fluoropyrimidines. Curr Probl Cancer. 2001;25(3):134–213. - PubMed
    1. Gamelin E, Boisdron-Celle M, Guérin-Meyer V, et al. Correlation between uracil and dihydrouracil plasma ratio, fluorouracil (5-FU) pharmacokinetic parameters, and tolerance in patients with advanced colorectal cancer: a potential interest for predicting 5-FU toxicity and determining optimal 5-FU dosage. J Clin Oncol. 1999;17(4):1105–1110. - PubMed

LinkOut - more resources