Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Aug 21:7:463.
doi: 10.3389/fmed.2020.00463. eCollection 2020.

Indomethacin Increases the Efficacy of Oxygen Utilization of Colonic Mitochondria and Uncouples Hepatic Mitochondria in Tissue Homogenates From Healthy Rats

Affiliations

Indomethacin Increases the Efficacy of Oxygen Utilization of Colonic Mitochondria and Uncouples Hepatic Mitochondria in Tissue Homogenates From Healthy Rats

Anna Herminghaus et al. Front Med (Lausanne). .

Abstract

Background: Studies suggest that indomethacin (Indo) exhibits detrimental changes in the small intestine (microvascular disorder, villus shortening, and epithelial disruption), mainly due to mitochondrial uncoupling. The effects of Indo on colon and liver tissue are unclear. The aim of this study was to determine the effects of Indo on mitochondrial respiration in colonic and hepatic tissue. Methods: Mitochondrial oxygen consumption was assessed in colon and liver homogenates from healthy rats. Homogenates were incubated without drug (control) or Indo (colon: 0.36, 1, 30, 179, 300, 1,000, 3,000 μM; liver: 0.36, 1, 3, 10, 30, 100, 179 μM; n = 6). State 2 (substrate-dependent) and state 3 (ADP-dependent respiration) were evaluated with respirometry. The respiratory control index (RCI) was derived and the ADP/O ratio was calculated. Statistics: Data presented as % of control, min/median/max, Kruskal-Wallis+Dunn's correction, * p < 0.05 vs. control. Results: Indo had no effect on RCI of colonic mitochondria. ADP/O ratio increased in complex I at concentrations of 1,000 and 3,000 μM (Indo 1,000 μM: 113.9/158.9/166.9%*; Indo 3,000 μM: 151.5/183.0/361.5%*) and in complex II at concentrations of 179 and 3,000 μM vs. control (179 μM: 111.3/73.1/74.9%*; 3,000 μM: 132.4/175.0/339.4%*). In hepatic mitochondria RCI decreased at 179 μM for both complexes vs. control (complex I: 25.6/40.7/62.9%*, complex II: 57.0/73.1/74.9%*). The ADP/O ratio was only altered in complex I at a concentration of 179 μM Indo vs. control (Indo 179 μM: 589.9/993.7/1195.0 %*). Conclusion: Indo affected parameters of mitochondrial function in an organ-specific and concentration-dependent manner. In colonic tissue, RCI remained unaltered whereas the ADP/O ratio increased. Indo at the highest concentration decreased the RCI for both complexes in hepatic mitochondria. The large increase in ADP/O ratio in complex I at the highest concentration likely reflects terminal uncoupling.

Keywords: adverse event; colon; indomethacin; liver; mitochondrial function.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Effect of indomethacin (0.36, 1, 30, 179, 300, 1,000, and 3,000 μM) on colonic mitochondrial function: State 3 for complex I (A) and II (D), respiratory control index (RCI) for complex I (B) und II (E) and ADP/O ratio for complex I (C) and II (F). Data are shown as percentage of the control value (median/min/max), n = 6, *p < 0.05 vs. control, formula imagep < 0.05 between groups.
Figure 2
Figure 2
Effect of indomethacin (0.36, 1, 3, 10, 30, 100, and 179 μM) on hepatic mitochondrial function: State 3 for complex I (A) and II (D), respiratory control index (RCI) for complex I (B) und II (E) and ADP/O ratio for complex I (C) and II (F). Data are presented as percentage of the control value (median/min/max), n = 6, *p < 0.05 vs. control, formula imagep < 0.05 between groups.

Similar articles

Cited by

References

    1. Laine L, Curtis SP, Langman M, Jensen DM, Cryer B, Kaur A, et al. . Lower gastrointestinal events in a double-blind trial of the cyclo-oxygenase-2 selective inhibitor etoricoxib and the traditional nonsteroidal anti-inflammatory drug diclofenac. Gastroenterology. (2008) 135:1517–25. 10.1053/j.gastro.2008.07.067 - DOI - PubMed
    1. Somasundaram S, Hayllar H, Rafi S, Wrigglesworth JM, Macpherson AJ, Bjarnason I. The biochemical basis of non-steroidal anti-inflammatory drug-induced damage to the gastrointestinal tract: a review and a hypothesis. Scand J Gastroenterol. (1995) 30:289–99. 10.3109/00365529509093280 - DOI - PubMed
    1. Bjarnason I, Scarpignato C, Holmgren E, Olszewski M, Rainsford KD, Lanas A. Mechanisms of damage to the gastrointestinal tract from nonsteroidal anti-inflammatory drugs. Gastroenterology. (2018) 154:500–14. 10.1053/j.gastro.2017.10.049 - DOI - PubMed
    1. Langenbach R, Morham SG, Tiano HF, Loftin CD, Ghanayem BI, Chulada PC, et al. . Prostaglandin synthase 1 gene disruption in mice reduces arachidonic acid-induced inflammation and indomethacin-induced gastric ulceration. Cell. (1995) 83:483–92. 10.1016/0092-8674(95)90126-4 - DOI - PubMed
    1. Sigthorsson G, Simpson RJ, Walley M, Anthony A, Foster R, Hotz-Behoftsitz C, et al. . COX-1 and 2, intestinal integrity, and pathogenesis of nonsteroidal anti-inflammatory drug enteropathy in mice. Gastroenterology. (2002) 122:1913–23. 10.1053/gast.2002.33647 - DOI - PubMed