Advances in Label-Free Detections for Nanofluidic Analytical Devices
- PMID: 32977690
- PMCID: PMC7598655
- DOI: 10.3390/mi11100885
Advances in Label-Free Detections for Nanofluidic Analytical Devices
Abstract
Nanofluidics, a discipline of science and engineering of fluids confined to structures at the 1-1000 nm scale, has experienced significant growth over the past decade. Nanofluidics have offered fascinating platforms for chemical and biological analyses by exploiting the unique characteristics of liquids and molecules confined in nanospaces; however, the difficulty to detect molecules in extremely small spaces hampers the practical applications of nanofluidic devices. Laser-induced fluorescence microscopy with single-molecule sensitivity has been so far a major detection method in nanofluidics, but issues arising from labeling and photobleaching limit its application. Recently, numerous label-free detection methods have been developed to identify and determine the number of molecules, as well as provide chemical, conformational, and kinetic information of molecules. This review focuses on label-free detection techniques designed for nanofluidics; these techniques are divided into two groups: optical and electrical/electrochemical detection methods. In this review, we discuss on the developed nanofluidic device architectures, elucidate the mechanisms by which the utilization of nanofluidics in manipulating molecules and controlling light-matter interactions enhances the capabilities of biological and chemical analyses, and highlight new research directions in the field of detections in nanofluidics.
Keywords: lab-on-a-chip; label-free detection; microTAS; nanofluidic analytical device; nanofluidics.
Conflict of interest statement
The authors declare no conflict of interest.
Figures





Similar articles
-
Fabrication of Infrared-Compatible Nanofluidic Devices for Plasmon-Enhanced Infrared Absorption Spectroscopy.Micromachines (Basel). 2020 Nov 30;11(12):1062. doi: 10.3390/mi11121062. Micromachines (Basel). 2020. PMID: 33266007 Free PMC article.
-
Nanofluidic devices for single-molecule analytical chemistry.Anal Sci. 2025 Aug;41(8):1289-1304. doi: 10.1007/s44211-025-00801-0. Epub 2025 Jun 12. Anal Sci. 2025. PMID: 40504360 Review.
-
Nonfluorescent Molecule Detection in 102 nm Nanofluidic Channels by Photothermal Optical Diffraction.Anal Chem. 2019 Aug 6;91(15):9741-9746. doi: 10.1021/acs.analchem.9b01334. Epub 2019 Jul 23. Anal Chem. 2019. PMID: 31335120
-
Cytokine analysis on a countable number of molecules from living single cells on nanofluidic devices.Analyst. 2019 Dec 2;144(24):7200-7208. doi: 10.1039/c9an01702j. Analyst. 2019. PMID: 31691693
-
Nanofluidics: A New Arena for Materials Science.Adv Mater. 2018 Jan;30(3). doi: 10.1002/adma.201702419. Epub 2017 Nov 2. Adv Mater. 2018. PMID: 29094401 Review.
Cited by
-
Substrate-supported Model Membrane as a Versatile Analytical/Biosensing Platform.Anal Sci. 2021 May 10;37(5):683-689. doi: 10.2116/analsci.20SCR10. Epub 2021 Jan 15. Anal Sci. 2021. PMID: 33455965
-
Controlled Nanoconfinement in a Microfluidic Modular Bead Array Device via Elastomeric Diaphragm Collapse for Enhancing Biomolecular Binding Kinetics.Small. 2025 Apr 17:e2412474. doi: 10.1002/smll.202412474. Online ahead of print. Small. 2025. PMID: 40244082
-
Advances in Nanofluidics.Micromachines (Basel). 2021 Apr 14;12(4):427. doi: 10.3390/mi12040427. Micromachines (Basel). 2021. PMID: 33919709 Free PMC article.
-
Metal-Free Fabrication of Fused Silica Extended Nanofluidic Channel to Remove Artifacts in Chemical Analysis.Micromachines (Basel). 2021 Jul 31;12(8):917. doi: 10.3390/mi12080917. Micromachines (Basel). 2021. PMID: 34442539 Free PMC article.
-
Surface Patterning of Closed Nanochannel Using VUV Light and Surface Evaluation by Streaming Current.Micromachines (Basel). 2021 Nov 6;12(11):1367. doi: 10.3390/mi12111367. Micromachines (Basel). 2021. PMID: 34832779 Free PMC article.
References
-
- Zhang B., Korolj A., Lai B.F.L., Radisic M. Advances in organ-on-a-chip engineering. Nat. Rev. Mater. 2018;3:257–278. doi: 10.1038/s41578-018-0034-7. - DOI
-
- Morikawa K., Tsukahara T. Investigation of Unique Protonic and Hydrodynamic Behavior of Aqueous Solutions Confined in Extended Nanospaces. Isr. J. Chem. 2014;54:1564–1572. doi: 10.1002/ijch.201400095. - DOI
-
- Schoch R.B., Han J., Renaud P. Transport phenomena in nanofluidics. Rev. Mod. Phys. 2008;80:839–883. doi: 10.1103/RevModPhys.80.839. - DOI
Publication types
LinkOut - more resources
Full Text Sources
Miscellaneous