Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr;21(4):1440-1452.
doi: 10.1111/ajt.16323. Epub 2020 Nov 10.

Protective effect of a novel clinical-grade small molecule necrosis inhibitor against oxidative stress and inflammation during islet transplantation

Affiliations
Free article

Protective effect of a novel clinical-grade small molecule necrosis inhibitor against oxidative stress and inflammation during islet transplantation

Gyuri Kim et al. Am J Transplant. 2021 Apr.
Free article

Abstract

Inhibition of mitochondrial reactive oxygen species (ROS) and subsequent damage-associated molecular patterns (DAMPs)-induced inflammatory responses could be a novel target in clinical islet transplantation. We investigated the protective effects of NecroX-7, a novel clinical-grade necrosis inhibitor that specifically targets mitochondrial ROS, against primary islet graft failure. Islets from heterozygote human islet amyloid polypeptide transgenic (hIAPP+/- ) mice and nonhuman primates (NHPs) were isolated or cultured with or without NecroX-7 in serum-deprived medium. Supplementation with NecroX-7 during hIAPP+/- mouse islet isolation markedly increased islet viability and adenosine triphosphate content, and attenuated ROS, transcription of c-Jun N-terminal kinases, high mobility group box 1, interleukin-1beta (IL-1 β ), IL-6, and tumor necrosis factor-alpha. Supplementation of NecroX-7 during serum-deprived culture also protected hIAPP+/- mouse and NHP islets against impaired viability, serum deprivation-induced ROS, proinflammatory response, and accumulation of toxic IAPP oligomer. Supplementation with NecroX-7 during isolation or serum-deprived culture of hIAPP+/- mouse and NHP islets also improved posttransplant glycemia in the recipient streptozotocin-induced diabetic hIAPP-/- mice and BALB/c-nu/nu mice, respectively. In conclusion, pretransplant administration of NecroX-7 during islet isolation and serum-deprived culture suppressed mitochondrial ROS injury, generation of DAMPs-induced proinflammatory responses, and accumulation of toxic IAPP oligomers ex vivo, and improved posttransplant glycemia in vivo.

Keywords: animal models: murine; diabetes: type 1; endocrinology / diabetology; islet isolation; islet transplantation; translational research / science.

PubMed Disclaimer

References

REFERENCES

    1. Lablanche S, Borot S, Wojtusciszyn A, et al. Five-year metabolic, functional, and safety results of patients with type 1 diabetes transplanted with allogenic islets within the Swiss-French GRAGIL Network. Diabetes Care. 2015;38(9):1714-1722.
    1. Hering BJ, Clarke WR, Bridges ND, et al. Phase 3 trial of transplantation of human islets in type 1 diabetes complicated by severe hypoglycemia. Diabetes Care. 2016;39(7):1230-1240.
    1. Qi M, Kinzer K, Danielson KK, et al. Five-year follow-up of patients with type 1 diabetes transplanted with allogeneic islets: the UIC experience. Acta Diabetol. 2014;51(5):833-843.
    1. Itoh T, Iwahashi S, Kanak MA, et al. Elevation of high-mobility group box 1 after clinical autologous islet transplantation and its inverse correlation with outcomes. Cell Transplant. 2014;23(2):153-165.
    1. Cheng Y, Xiong J, Chen Q, et al. Hypoxia/reoxygenation-induced HMGB1 translocation and release promotes islet proinflammatory cytokine production and early islet graft failure through TLRs signaling. Biochim Biophys Acta Mol Basis Dis. 2017;1863(2):354-364.

Publication types