Protective effect of a novel clinical-grade small molecule necrosis inhibitor against oxidative stress and inflammation during islet transplantation
- PMID: 32978875
- DOI: 10.1111/ajt.16323
Protective effect of a novel clinical-grade small molecule necrosis inhibitor against oxidative stress and inflammation during islet transplantation
Abstract
Inhibition of mitochondrial reactive oxygen species (ROS) and subsequent damage-associated molecular patterns (DAMPs)-induced inflammatory responses could be a novel target in clinical islet transplantation. We investigated the protective effects of NecroX-7, a novel clinical-grade necrosis inhibitor that specifically targets mitochondrial ROS, against primary islet graft failure. Islets from heterozygote human islet amyloid polypeptide transgenic (hIAPP+/- ) mice and nonhuman primates (NHPs) were isolated or cultured with or without NecroX-7 in serum-deprived medium. Supplementation with NecroX-7 during hIAPP+/- mouse islet isolation markedly increased islet viability and adenosine triphosphate content, and attenuated ROS, transcription of c-Jun N-terminal kinases, high mobility group box 1, interleukin-1beta (IL-1 ), IL-6, and tumor necrosis factor-alpha. Supplementation of NecroX-7 during serum-deprived culture also protected hIAPP+/- mouse and NHP islets against impaired viability, serum deprivation-induced ROS, proinflammatory response, and accumulation of toxic IAPP oligomer. Supplementation with NecroX-7 during isolation or serum-deprived culture of hIAPP+/- mouse and NHP islets also improved posttransplant glycemia in the recipient streptozotocin-induced diabetic hIAPP-/- mice and BALB/c-nu/nu mice, respectively. In conclusion, pretransplant administration of NecroX-7 during islet isolation and serum-deprived culture suppressed mitochondrial ROS injury, generation of DAMPs-induced proinflammatory responses, and accumulation of toxic IAPP oligomers ex vivo, and improved posttransplant glycemia in vivo.
Keywords: animal models: murine; diabetes: type 1; endocrinology / diabetology; islet isolation; islet transplantation; translational research / science.
© 2020 The American Society of Transplantation and the American Society of Transplant Surgeons.
References
REFERENCES
-
- Lablanche S, Borot S, Wojtusciszyn A, et al. Five-year metabolic, functional, and safety results of patients with type 1 diabetes transplanted with allogenic islets within the Swiss-French GRAGIL Network. Diabetes Care. 2015;38(9):1714-1722.
-
- Hering BJ, Clarke WR, Bridges ND, et al. Phase 3 trial of transplantation of human islets in type 1 diabetes complicated by severe hypoglycemia. Diabetes Care. 2016;39(7):1230-1240.
-
- Qi M, Kinzer K, Danielson KK, et al. Five-year follow-up of patients with type 1 diabetes transplanted with allogeneic islets: the UIC experience. Acta Diabetol. 2014;51(5):833-843.
-
- Itoh T, Iwahashi S, Kanak MA, et al. Elevation of high-mobility group box 1 after clinical autologous islet transplantation and its inverse correlation with outcomes. Cell Transplant. 2014;23(2):153-165.
-
- Cheng Y, Xiong J, Chen Q, et al. Hypoxia/reoxygenation-induced HMGB1 translocation and release promotes islet proinflammatory cytokine production and early islet graft failure through TLRs signaling. Biochim Biophys Acta Mol Basis Dis. 2017;1863(2):354-364.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous