Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Nov:254:153277.
doi: 10.1016/j.jplph.2020.153277. Epub 2020 Sep 17.

Foliar absorption coefficient derived from reflectance spectra: A gauge of the efficiency of in situ light-capture by different pigment groups

Affiliations

Foliar absorption coefficient derived from reflectance spectra: A gauge of the efficiency of in situ light-capture by different pigment groups

Anatoly Gitelson et al. J Plant Physiol. 2020 Nov.

Abstract

The absorption of Photosynthetically Active Radiation (PAR) by different foliar pigments defines the amount of energy available for photosynthesis and also the need for photoprotection. Both characteristics reveal essential information about productivity, development, and stress acclimation of plants. Here we present an approach for the estimation of the efficiency by three foliar pigment groups (chlorophylls, carotenoids, and anthocyanins) at capturing light, via the absorption coefficient derived from leaf reflectance spectra. The absorption coefficient (and hence light capture efficiency) of the pigment is quantitatively related to the ratio of light absorbed by each pigment group over the total amount of light absorbed by the leaf. The proposed approach allows discerning the contribution of pigment groups to the overall light absorption, despite the strong interference by other pigments with overlapping absorption spectra. For photosynthetic pigments, like chlorophylls, this is indicative of the energy captured for photosynthesis and hence of potential plant productivity. For photoprotective pigments, like anthocyanins or secondary carotenoids, it gives information about the spectral ranges where their optical screening works best and their screening capacity. In addition, the approach allows the selection of optimal spectral bands where different pigments operate. Such information improves our understanding of the phenological, physiological and photosynthetic dynamics of plants over space and through time, useful for developing better monitoring and management strategies.

Keywords: Absorption coefficient; Anthocyanins; Carotenoids; Chlorophylls; Photosynthetically active radiation.

PubMed Disclaimer

LinkOut - more resources