Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Dec;39(12):1767-1784.
doi: 10.1007/s00299-020-02603-2. Epub 2020 Sep 26.

OsRbohB-mediated ROS production plays a crucial role in drought stress tolerance of rice

Affiliations

OsRbohB-mediated ROS production plays a crucial role in drought stress tolerance of rice

Yi Shi et al. Plant Cell Rep. 2020 Dec.

Abstract

We found that a rice NADPH oxidase gene OsRbohB contributes drought tolerance and its functions are involved in the interaction of the OsRbohB-mediated ROS production and ABA signaling. The plasma membrane NADPH oxidases, also known as respiratory burst oxidase homologs, are the key producers of ROS under both normal and stress conditions in plants. However, their functions in rice development and stress tolerance are still under investigation. Here, we found that a rice NADPH oxidase gene OsRbohB, also named OsNOX1, is expressed in all tissues examined throughout the development stages with higher transcripts in leaves. The transcriptional expression of OsRbohB is also strongly stimulated by dehydration, salt and several phytohormonal treatments. Compared with wide-type and the OsRbohB-overexpressing transgenic plants, osrbohB, a Tos17 insertion knockout mutant of OsRbohB, shows lower ROS production, abscisic acid (ABA) content and transcripts of a series of stress-related genes. The osrbohB mutant also exhibits lower seed germination rate, organ size and thousand seed weight, but higher stomatal aperture and sensitivity to drought. Moreover, a number of genes involved in plant development, stress response, transcriptional regulation, and particularly ABA signaling are differentially expressed in osrbohB plants under both normal growth and drought conditions. All these results suggest the roles of OsRbohB in drought tolerance of rice, which probably performed through the interaction of the OsRbohB-mediated ROS production and ABA signaling.

Keywords: ABA; Drought; NADPH oxidase; OsRbohB; ROS; Rice (Oryza sativa).

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources