Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Aug;49(2):442-51.
doi: 10.1111/j.1471-4159.1987.tb02885.x.

Developmental and functional studies of parvalbumin and calbindin D28K in hypothalamic neurons grown in serum-free medium

Developmental and functional studies of parvalbumin and calbindin D28K in hypothalamic neurons grown in serum-free medium

G E Pfyffer et al. J Neurochem. 1987 Aug.

Abstract

The Ca2+-binding proteins parvalbumin (Mr = 12K) and calbindin D28K [previously designated vitamin D-dependent Ca2+-binding protein (Mr = 28K)] are neuronal markers, but their functional roles in mammalian brain are unknown. The expression of these two proteins was studied by immunocytochemical methods in serum-free cultures of hypothalamic cells from 16-day-old fetal mice. Parvalbumin is first detected in all immature neurons, but during differentiation, the number of parvalbumin-immunoreactive neurons greatly declines to a level reminiscent of that observed in vivo, where only a subpopulation of neurons stains for parvalbumin. In contrast, calbindin D28K was expressed throughout the period investigated only in a distinct subpopulation of neurons. Depolarization of fully differentiated hypothalamic neurons in culture resulted in a dramatic decrease of parvalbumin immunoreactivity but not of calbindin D28K immunoreactivity. The parvalbumin staining was restored on repolarization. Because the anti-parvalbumin serum seems to recognize only the metal-bound form of parvalbumin, the loss of immunoreactivity may signal a release of Ca2+ from intracellular parvalbumin during depolarization of the cells. We suggest that parvalbumin might be involved in Ca2+-dependent processes associated with neurotransmitter release.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources