Stereochemistry of internucleotidic bond formation by tRNA nucleotidyltransferase from baker's yeast
- PMID: 329872
- DOI: 10.1021/bi00634a021
Stereochemistry of internucleotidic bond formation by tRNA nucleotidyltransferase from baker's yeast
Abstract
Isomer A of adenosine 5'-O-(1-thiotriphosphate) (ATP alpha S) is a substrate for tRNA nucleotidyltransferase from baker's yeast, whereas isomer B is a competitive inhibitor. The tRNA resulting from this reaction has a phosphorothioate instead of a phosphate diester linkage at the last internucleotidic linkage between cytidine and adenosine. On limited digestion of this tRNA with RNase A, one can isolate cytidine 2',3'-cyclic phosphorothioate which can be deaminated to uridine 2',3'-cyclic phosphorothioate. It can be shown that this compound is the endo isomer and that, therefore, the phosphorothioate diester bond in the tRNA must have had the R configuration. This result indicates that no racemization during the condensation of ATP alpha S, isomer A, onto the tRNA had occurred. Whether inversion or retention of configuration had taken place awaits elucidation of the absolute configuration of isomer A of ATP alpha S.
MeSH terms
Substances
LinkOut - more resources
Other Literature Sources