Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Sep 28;12(1):82.
doi: 10.1186/s13073-020-00782-x.

Understanding the impact of antibiotic perturbation on the human microbiome

Affiliations
Review

Understanding the impact of antibiotic perturbation on the human microbiome

Drew J Schwartz et al. Genome Med. .

Erratum in

Abstract

The human gut microbiome is a dynamic collection of bacteria, archaea, fungi, and viruses that performs essential functions for immune development, pathogen colonization resistance, and food metabolism. Perturbation of the gut microbiome's ecological balance, commonly by antibiotics, can cause and exacerbate diseases. To predict and successfully rescue such perturbations, first, we must understand the underlying taxonomic and functional dynamics of the microbiome as it changes throughout infancy, childhood, and adulthood. We offer an overview of the healthy gut bacterial architecture over these life stages and comment on vulnerability to short and long courses of antibiotics. Second, the resilience of the microbiome after antibiotic perturbation depends on key characteristics, such as the nature, timing, duration, and spectrum of a course of antibiotics, as well as microbiome modulatory factors such as age, travel, underlying illness, antibiotic resistance pattern, and diet. In this review, we discuss acute and chronic antibiotic perturbations to the microbiome and resistome in the context of microbiome stability and dynamics. We specifically discuss key taxonomic and resistance gene changes that accompany antibiotic treatment of neonates, children, and adults. Restoration of a healthy gut microbial ecosystem after routine antibiotics will require rationally managed exposure to specific antibiotics and microbes. To that end, we review the use of fecal microbiota transplantation and probiotics to direct recolonization of the gut ecosystem. We conclude with our perspectives on how best to assess, predict, and aid recovery of the microbiome after antibiotic perturbation.

Keywords: Antibiotics; Dynamics; Gut microbiome; Perturbation; Recolonization; Resilience; Resistome.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Antibiotic perturbation to the microbiome needs to be considered in context. Certain factors are important to consider throughout life (overarching factors). Other factors such as diet and the functional and species diversity and redundancy are important to consider when the antibiotic perturbation is applied. The duration, spectrum, and route of antibiotics are vitally important in the context of how the microbiome responds during an intervention. The post-antibiotic environment including availability and colonization of pathogens, frequency of horizontal gene transfer (HGT), MDROs, and beneficial microbes is important to consider the resilience and response after antibiotic cessation. These factors influence the structure and function of the microbiome before, during, and after antibiotics throughout life. Created with BioRender

References

    1. Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med. 2016;375(24):2369–2379. - PubMed
    1. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the immune system. Nature. 2011;474(7351):327–336. - PMC - PubMed
    1. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–563. - PMC - PubMed
    1. Sharon G, Sampson TR, Geschwind DH, Mazmanian SK. The central nervous system and the gut microbiome. Cell. 2016;167(4):915–932. - PMC - PubMed
    1. Stokholm J, Blaser MJ, Thorsen J, Rasmussen MA, Waage J, Vinding RK, et al. Maturation of the gut microbiome and risk of asthma in childhood. Nat Commun. 2018;9(1):141. - PMC - PubMed

Publication types

MeSH terms

Substances