Electrical bioadhesive interface for bioelectronics
- PMID: 32989277
- DOI: 10.1038/s41563-020-00814-2
Electrical bioadhesive interface for bioelectronics
Abstract
Reliable functions of bioelectronic devices require conformal, stable and conductive interfaces with biological tissues. Integrating bioelectronic devices with tissues usually relies on physical attachment or surgical suturing; however, these methods face challenges such as non-conformal contact, unstable fixation, tissue damage, and/or scar formation. Here, we report an electrical bioadhesive (e-bioadhesive) interface, based on a thin layer of a graphene nanocomposite, that can provide rapid (adhesion formation within 5 s), robust (interfacial toughness >400 J m-2) and on-demand detachable integration of bioelectronic devices on diverse wet dynamic tissues. The electrical conductivity (>2.6 S m-1) of the e-bioadhesive interface further allows bidirectional bioelectronic communications. We demonstrate biocompatibility, applicability, mechanical and electrical stability, and recording and stimulation functionalities of the e-bioadhesive interface based on ex vivo porcine and in vivo rat models. These findings offer a promising strategy to improve tissue-device integration and enhance the performance of biointegrated electronic devices.
Similar articles
-
3D Printing of Robust High-Performance Conducting Polymer Hydrogel-Based Electrical Bioadhesive Interface for Soft Bioelectronics.Small. 2024 May;20(19):e2308778. doi: 10.1002/smll.202308778. Epub 2023 Dec 8. Small. 2024. PMID: 38063822
-
Intrinsically Adhesive and Conductive Hydrogel Bridging the Bioelectronic-Tissue Interface for Biopotentials Recording.ACS Nano. 2025 Mar 4;19(8):7755-7766. doi: 10.1021/acsnano.4c12823. Epub 2025 Feb 23. ACS Nano. 2025. PMID: 39988891
-
Multifunctional Conductive Hydrogel Interface for Bioelectronic Recording and Stimulation.Adv Healthc Mater. 2024 Sep;13(22):e2400562. doi: 10.1002/adhm.202400562. Epub 2024 Jun 6. Adv Healthc Mater. 2024. PMID: 38773929 Review.
-
Self-healing electrical bioadhesive interface for electrophysiology recording.J Colloid Interface Sci. 2024 Jan 15;654(Pt A):639-648. doi: 10.1016/j.jcis.2023.09.190. Epub 2023 Oct 11. J Colloid Interface Sci. 2024. PMID: 37864869
-
Functional Hydrogels for Implantable Bioelectronic Devices.Luminescence. 2025 Mar;40(3):e70148. doi: 10.1002/bio.70148. Luminescence. 2025. PMID: 40099618 Review.
Cited by
-
Conductive Hydrogels Based on Industrial Lignin: Opportunities and Challenges.Polymers (Basel). 2022 Sep 7;14(18):3739. doi: 10.3390/polym14183739. Polymers (Basel). 2022. PMID: 36145882 Free PMC article. Review.
-
Conductive Hydrogels with Dynamic Reversible Networks for Biomedical Applications.Adv Healthc Mater. 2021 Jun;10(11):e2100012. doi: 10.1002/adhm.202100012. Epub 2021 Apr 30. Adv Healthc Mater. 2021. PMID: 33930246 Free PMC article. Review.
-
Nanofiber embedded bioinspired strong wet friction surface.Sci Adv. 2023 Oct 13;9(41):eadi4843. doi: 10.1126/sciadv.adi4843. Epub 2023 Oct 12. Sci Adv. 2023. PMID: 37824620 Free PMC article.
-
Transparent Electronics for Wearable Electronics Application.Chem Rev. 2023 Aug 23;123(16):9982-10078. doi: 10.1021/acs.chemrev.3c00139. Epub 2023 Aug 5. Chem Rev. 2023. PMID: 37542724 Free PMC article. Review.
-
Ferromagnetic soft catheter robots for minimally invasive bioprinting.Nat Commun. 2021 Aug 20;12(1):5072. doi: 10.1038/s41467-021-25386-w. Nat Commun. 2021. PMID: 34417473 Free PMC article.
References
-
- Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010).
-
- Someya, T., Bao, Z. & Malliaras, G. G. The rise of plastic bioelectronics. Nature 540, 379–385 (2016).
-
- Feiner, R. & Dvir, T. Tissue–electronics interfaces: from implantable devices to engineered tissues. Nat. Rev. Mater. 3, 17076 (2018).
-
- Schiavone, G. & Lacour, S. P. Conformable bioelectronic interfaces: mapping the road ahead. Sci. Transl. Med. 11, eaaw5858 (2019).
-
- Yuk, H., Lu, B. & Zhao, X. Hydrogel bioelectronics. Chem. Soc. Rev. 48, 1642–1667 (2019).
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources