Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Sep 30;134(18):2503-2520.
doi: 10.1042/CS20200308.

Vascular toxicity associated with anti-angiogenic drugs

Affiliations
Review

Vascular toxicity associated with anti-angiogenic drugs

Karla B Neves et al. Clin Sci (Lond). .

Abstract

Over the past two decades, the treatment of cancer has been revolutionised by the highly successful introduction of novel molecular targeted therapies and immunotherapies, including small-molecule kinase inhibitors and monoclonal antibodies that target angiogenesis by inhibiting vascular endothelial growth factor (VEGF) signaling pathways. Despite their anti-angiogenic and anti-cancer benefits, the use of VEGF inhibitors (VEGFi) and other tyrosine kinase inhibitors (TKIs) has been hampered by potent vascular toxicities especially hypertension and thromboembolism. Molecular processes underlying VEGFi-induced vascular toxicities still remain unclear but inhibition of endothelial NO synthase (eNOS), reduced nitric oxide (NO) production, oxidative stress, activation of the endothelin system, and rarefaction have been implicated. However, the pathophysiological mechanisms still remain elusive and there is an urgent need to better understand exactly how anti-angiogenic drugs cause hypertension and other cardiovascular diseases (CVDs). This is especially important because VEGFi are increasingly being used in combination with other anti-cancer dugs, such as immunotherapies (immune checkpoint inhibitors (ICIs)), other TKIs, drugs that inhibit epigenetic processes (histone deacetylase (HDAC) inhibitor) and poly (adenosine diphosphate-ribose) polymerase (PARP) inhibitors, which may themselves induce cardiovascular injury. Here, we discuss vascular toxicities associated with TKIs, especially VEGFi, and provide an up-to-date overview on molecular mechanisms underlying VEGFi-induced vascular toxicity and cardiovascular sequelae. We also review the vascular effects of VEGFi when used in combination with other modern anti-cancer drugs.

Keywords: angiogenesis; cancer; cardiovascular physiology; hypertension; vascular endothelial growth factor.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources