Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Sep 29;10(1):126.
doi: 10.1186/s13613-020-00743-y.

Physiological effects of adding ECCO2R to invasive mechanical ventilation for COPD exacerbations

Affiliations

Physiological effects of adding ECCO2R to invasive mechanical ventilation for COPD exacerbations

J-L Diehl et al. Ann Intensive Care. .

Abstract

Background: Extracorporeal CO2 removal (ECCO2R) could be a valuable additional modality for invasive mechanical ventilation (IMV) in COPD patients suffering from severe acute exacerbation (AE). We aimed to evaluate in such patients the effects of a low-to-middle extracorporeal blood flow device on both gas exchanges and dynamic hyperinflation, as well as on work of breathing (WOB) during the IMV weaning process.

Study design and methods: Open prospective interventional study in 12 deeply sedated IMV AE-COPD patients studied before and after ECCO2R initiation. Gas exchange and dynamic hyperinflation were compared after stabilization without and with ECCO2R (Hemolung, Alung, Pittsburgh, USA) combined with a specific adjustment algorithm of the respiratory rate (RR) designed to improve arterial pH. When possible, WOB with and without ECCO2R was measured at the end of the weaning process. Due to study size, results are expressed as median (IQR) and a non-parametric approach was adopted.

Results: An improvement in PaCO2, from 68 (63; 76) to 49 (46; 55) mmHg, p = 0.0005, and in pH, from 7.25 (7.23; 7.29) to 7.35 (7.32; 7.40), p = 0.0005, was observed after ECCO2R initiation and adjustment of respiratory rate, while intrinsic PEEP and Functional Residual Capacity remained unchanged, from 9.0 (7.0; 10.0) to 8.0 (5.0; 9.0) cmH2O and from 3604 (2631; 4850) to 3338 (2633; 4848) mL, p = 0.1191 and p = 0.3013, respectively. WOB measurements were possible in 5 patients, indicating near-significant higher values after stopping ECCO2R: 11.7 (7.5; 15.0) versus 22.6 (13.9; 34.7) Joules/min., p = 0.0625 and 1.1 (0.8; 1.4) versus 1.5 (0.9; 2.8) Joules/L, p = 0.0625. Three patients died in-ICU. Other patients were successfully hospital-discharged.

Conclusions: Using a formalized protocol of RR adjustment, ECCO2R permitted to effectively improve pH and diminish PaCO2 at the early phase of IMV in 12 AE-COPD patients, but not to diminish dynamic hyperinflation in the whole group. A trend toward a decrease in WOB was also observed during the weaning process. Trial registration ClinicalTrials.gov: Identifier: NCT02586948.

Keywords: Alveolar ventilation; COPD acute exacerbation; Extracorporeal carbon dioxide removal; Invasive mechanical ventilation; Work of breathing.

PubMed Disclaimer

Conflict of interest statement

Dr. Diehl reports grants and non-financial support from Alung, non-financial support from General Electric Healthcare, during the conduct of the study; personal fees and non-financial support from Xenios Novalung (Fresenius Medical Care) outside the submitted work.

Dr. Aissaoui reports non-financial support from ASTRAZENECA, non-financial support from MEDTRONIC, non-financial support from ABIOMED, outside the submitted work.

Dr. Mercat reports personal fees from Faron Pharmaceuticals, personal fees from Air Liquide Medical Systems, grants and personal fees from Fisher and Paykel, personal fees from Medtronic, personal fees from Drager, non-financial support from General Electric, outside the submitted work.

Figures

Fig. 1
Fig. 1
Flowchart of the study. PaCO2target: PaCO2 corresponding to a pH value of 7.40, based on the Henderson-Hasselbach equation, governing the relationship between the PaCO2, pH and bicarbonates plasma values. In cases of mixed respiratory and metabolic acidosis, a PaCO2target value of 40 mmHg was retained. RR: respiratory rate
Fig. 2
Fig. 2
Respiratory rate before ECCO2R initiation and after ECCO2R initiation and adjustment aiming to improve arterial pH value. D0: first day with ECCO2R, after adjustment of respiratory rate aiming to improve arterial pH value

References

    1. Decramer M, Janssens W, Miravitlles M. Chronic obstructive pulmonary disease. Lancet. 2012;379:1341–1351. doi: 10.1016/S0140-6736(11)60968-9. - DOI - PMC - PubMed
    1. Kramer N, Meyer TJ, Meharg J, Cece RD, Hill NS. Randomized, prospective trial of noninvasive positive pressure ventilation in acute respiratory failure. Am J Respir Crit Care Med. 1995;151:1799–1806. doi: 10.1164/ajrccm.151.6.7767523. - DOI - PubMed
    1. Brochard L, Mancebo J, Wysocki M, Lofaso F, Conti G, Rauss A, et al. Noninvasive ventilation for acute exacerbations of chronic obstructive pulmonary disease. N Engl J Med. 1995;333:817–822. doi: 10.1056/NEJM199509283331301. - DOI - PubMed
    1. Chandra D, Stamm JA, Taylor B, Ramos RM, Satterwhite L, Krishnan JA, et al. Outcomes of noninvasive ventilation for acute exacerbations of chronic obstructive pulmonary disease in the United States, 1998–2008. Am J Respir Crit Care Med. 2012;185:152–159. doi: 10.1164/rccm.201106-1094OC. - DOI - PMC - PubMed
    1. Boyle AJ, Sklar MC, McNamee JJ, Brodie D, Slutsky AS, Brochard L, et al. Extracorporeal carbon dioxide removal for lowering the risk of mechanical ventilation: research questions and clinical potential for the future. Lancet Respir Med. 2018;6:874–884. doi: 10.1016/S2213-2600(18)30326-6. - DOI - PubMed

Associated data

LinkOut - more resources