Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Jul;328(6126):164-6.
doi: 10.1038/328164a0.

Evidence for the involvement of ATP in co-translational protein translocation

Evidence for the involvement of ATP in co-translational protein translocation

L L Chen et al. Nature. 1987 Jul.

Abstract

Identification of the source of energy for protein translocation across biological membranes is important in understanding the mechanism of this process. In eukaryotic cells, the tight coupling between translation and translocation and firm attachment of the secreting ribosomes to membranes, as well as theoretical calculations, have led to the suggestion that energy derived from protein synthesis is sufficient for protein translocation. On the other hand, in bacterial systems neither the attachment of ribosomes to membrane (other than nascent chains) nor tight coupling of translocation to translocation has been observed. Moreover, certain proteins can be translocated across membranes either at the time of, or after, translation. The separation of protein translocation from translation has made possible the demonstration that ATP hydrolysis is essential for post-translational protein translocation across bacterial membranes and, more recently, also across canine and yeast endoplasmic reticulum membranes. Here we report that certain ATP analogues inhibit co-translational protein translocation at concentrations that do not interfere with protein synthesis, suggesting that ATP is also required for co-translational protein translocation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources