Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Dec;9(2):395-402.
doi: 10.1007/s40120-020-00217-0. Epub 2020 Oct 1.

A Narrative Review of the Role of Transthyretin in Health and Disease

Affiliations
Review

A Narrative Review of the Role of Transthyretin in Health and Disease

Marcia Almeida Liz et al. Neurol Ther. 2020 Dec.

Abstract

Transthyretin (TTR) is a tetrameric transport protein highly conserved through vertebrate evolution and synthesized in the liver, choroid plexus, and retinal pigment epithelium. TTR transports the thyroid hormone thyroxine and the retinol-binding protein (RBP) bound to retinol (vitamin A). Mutations in TTR are associated with inherited transthyretin amyloidosis (ATTRv), a progressive, debilitating disease that is ultimately fatal and is characterized by misfolding of TTR and aggregation as amyloid fibrils, predominantly leading to cardiomyopathy or polyneuropathy depending on the particular TTR mutation. Transthyretin amyloid cardiomyopathy can also occur as an age-related disease caused by misfolding of wild-type TTR. Apart from its transport role, little is known about possible additional physiological functions of TTR. Evidence from animal model systems in which TTR has been disrupted via gene knockout is adding to our cumulative understanding of TTR function. There is growing evidence that TTR may have a role in neuroprotection and promotion of neurite outgrowth in response to injury. Here, we review the literature describing potential roles of TTR in neurobiology and in the pathophysiology of diseases other than ATTR amyloidosis. A greater understanding of these processes may also contribute to further clarification of the pathology of ATTR and the effects of potential therapies for TTR-related conditions.

Keywords: Alzheimer’s disease; Amyloidosis; Neurodegeneration; Neuroprotection; Transthyretin.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Known biological functions of TTR from mouse models and human studies. TTR transthyretin

References

    1. Li X, Buxbaum JN. Transthyretin and the brain re-visited: is neuronal synthesis of transthyretin protective in Alzheimer's disease? Mol Neurodegener. 2011;6:79. - PMC - PubMed
    1. Andrade C. A peculiar form of peripheral neuropathy; familiar atypical generalized amyloidosis with special involvement of the peripheral nerves. Brain. 1952;75:408–427. - PubMed
    1. Rapezzi C, Quarta CC, Riva L, et al. Transthyretin-related amyloidoses and the heart: a clinical overview. Nat Rev Cardiol. 2010;7:398–408. - PubMed
    1. Marcoux J, Mangione PP, Porcari R, et al. A novel mechano-enzymatic cleavage mechanism underlies transthyretin amyloidogenesis. EMBO Mol Med. 2015;7:1337–1349. - PMC - PubMed
    1. Koike H, Misu K, Ikeda S, et al. Type I (transthyretin Met30) familial amyloid polyneuropathy in Japan: early- vs late-onset form. Arch Neurol. 2002;59:1771–1776. - PubMed