Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Feb 1:583:178-187.
doi: 10.1016/j.jcis.2020.09.047. Epub 2020 Sep 22.

Highly efficient inverted polymer solar cells by using solution processed MgO/ZnO composite interfacial layers

Affiliations

Highly efficient inverted polymer solar cells by using solution processed MgO/ZnO composite interfacial layers

Shuai Huang et al. J Colloid Interface Sci. .

Abstract

A highly efficient inverted polymer solar cell (PSC) has been successfully demonstrated by utilizing a wide bandgap magnesium oxide (MgO) film and ZnO stacked structure as an effective cathode interfacial layer. The MgO/ZnO bilayer structure is designed to combine the superiorities of both ZnO ETL and MgO film, based on the efficiency comparison of the PSCs without and with MgO interlayer. The ZnO film can serve as an efficient electron transport layer (ETL), while the MgO layer can reduce the surface defects of FTO and block the holes effectively, leading to an elevated electron collection and suppressed carrier recombination at the interface. With the excellent dual functions interface characteristics induced by the MgO/ZnO stacked films, the corresponding inverted PSC device based on the PTB7-Th:PC71BM photoactive layer system presents a superior power conversion efficiency (PCE) of 11.02%, which is higher than that of the PSC without MgO (8.79%). We believe that the MgO/ZnO bilayer structure is a superior interfacial contender for the organic photovoltaics and other photoelectric devices requiring cathode interfacial layers.

Keywords: Carrier recombination; FTO electrode; Hole blocking; MgO nanoparticles; Polymer solar cells.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources