Advances in Multimodal Emotion Recognition Based on Brain-Computer Interfaces
- PMID: 33003397
- PMCID: PMC7600724
- DOI: 10.3390/brainsci10100687
Advances in Multimodal Emotion Recognition Based on Brain-Computer Interfaces
Abstract
With the continuous development of portable noninvasive human sensor technologies such as brain-computer interfaces (BCI), multimodal emotion recognition has attracted increasing attention in the area of affective computing. This paper primarily discusses the progress of research into multimodal emotion recognition based on BCI and reviews three types of multimodal affective BCI (aBCI): aBCI based on a combination of behavior and brain signals, aBCI based on various hybrid neurophysiology modalities and aBCI based on heterogeneous sensory stimuli. For each type of aBCI, we further review several representative multimodal aBCI systems, including their design principles, paradigms, algorithms, experimental results and corresponding advantages. Finally, we identify several important issues and research directions for multimodal emotion recognition based on BCI.
Keywords: affective computing; brain–computer interface (BCI); emotion recognition; multimodal fusion.
Conflict of interest statement
The authors declare that there are no conflicts of interest regarding the publication of this paper.
Figures




Similar articles
-
Sensor Modalities for Brain-Computer Interface Technology: A Comprehensive Literature Review.Neurosurgery. 2020 Feb 1;86(2):E108-E117. doi: 10.1093/neuros/nyz286. Neurosurgery. 2020. PMID: 31361011 Review.
-
A Hybrid Multimodal Emotion Recognition Framework for UX Evaluation Using Generalized Mixture Functions.Sensors (Basel). 2023 Apr 28;23(9):4373. doi: 10.3390/s23094373. Sensors (Basel). 2023. PMID: 37177574 Free PMC article.
-
Emotion recognition from single-channel EEG signals using a two-stage correlation and instantaneous frequency-based filtering method.Comput Methods Programs Biomed. 2019 May;173:157-165. doi: 10.1016/j.cmpb.2019.03.015. Epub 2019 Mar 22. Comput Methods Programs Biomed. 2019. PMID: 31046991
-
Brain computer interfaces, a review.Sensors (Basel). 2012;12(2):1211-79. doi: 10.3390/s120201211. Epub 2012 Jan 31. Sensors (Basel). 2012. PMID: 22438708 Free PMC article. Review.
-
Emotional State Estimation using Sensor Fusion of EEG and EDA.Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:5609-5612. doi: 10.1109/EMBC.2019.8856895. Annu Int Conf IEEE Eng Med Biol Soc. 2019. PMID: 31947127
Cited by
-
Improved classification performance of EEG-fNIRS multimodal brain-computer interface based on multi-domain features and multi-level progressive learning.Front Hum Neurosci. 2022 Aug 4;16:973959. doi: 10.3389/fnhum.2022.973959. eCollection 2022. Front Hum Neurosci. 2022. PMID: 35992956 Free PMC article.
-
Study on the Psychological States of Olfactory Stimuli Using Electroencephalography and Heart Rate Variability.Sensors (Basel). 2023 Apr 16;23(8):4026. doi: 10.3390/s23084026. Sensors (Basel). 2023. PMID: 37112367 Free PMC article.
-
Advances in Neuroimaging and Deep Learning for Emotion Detection: A Systematic Review of Cognitive Neuroscience and Algorithmic Innovations.Diagnostics (Basel). 2025 Feb 13;15(4):456. doi: 10.3390/diagnostics15040456. Diagnostics (Basel). 2025. PMID: 40002607 Free PMC article. Review.
-
STGATE: Spatial-temporal graph attention network with a transformer encoder for EEG-based emotion recognition.Front Hum Neurosci. 2023 Apr 13;17:1169949. doi: 10.3389/fnhum.2023.1169949. eCollection 2023. Front Hum Neurosci. 2023. PMID: 37125349 Free PMC article.
-
Semi-supervised bipartite graph construction with active EEG sample selection for emotion recognition.Med Biol Eng Comput. 2024 Sep;62(9):2805-2824. doi: 10.1007/s11517-024-03094-z. Epub 2024 May 3. Med Biol Eng Comput. 2024. PMID: 38700614
References
-
- Mühl C., Nijholt A., Allison B., Dunne S., Heylen D. Affective brain-computer interfaces (aBCI 2011); Proceedings of the International Conference on Affective Computing and Intelligent Interaction; Memphis, TN, USA. 9–12 October 2011; p. 435.
-
- Mühl C., Allison B., Nijholt A., Chanel G. A survey of affective brain computer interfaces: Principles, state-of-the-art, and challenges. Brain-Comput. Interfaces. 2014;1:66–84. doi: 10.1080/2326263X.2014.912881. - DOI
-
- Van den Broek E.L. Cognitive Behavioural Systems. Springer; Berlin/Heidelberg, Germany: 2012. Affective computing: A reverence for a century of research; pp. 434–448.
-
- Ekman P.E., Davidson R.J. The Nature of Emotion: Fundamental Questions. Oxford University Press; Oxford, UK: 1994.
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources