Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jul-Sep;10(3):114-121.
doi: 10.4103/2045-9912.296041.

Effects of hydrogen-rich water prepared by alternating-current-electrolysis on antioxidant activity, DNA oxidative injuries, and diabetes-related markers

Affiliations

Effects of hydrogen-rich water prepared by alternating-current-electrolysis on antioxidant activity, DNA oxidative injuries, and diabetes-related markers

Ryoko Asada et al. Med Gas Res. 2020 Jul-Sep.

Abstract

Hydrogen-rich water is conventionally prepared by direct current-electrolysis, but has been not or scarcely prepared by alternating current (AC)-electrolysis. The AC preparations from tap water for 20-30 minutes exhibit a dissolved hydrogen concentration of 1.55 mg/L, which was close to the theoretical maximum value of 1.6 mg/L. These preparations also displayed an oxidation-reduction potential of -270 mV (tap water: +576 mV) and pH of 7.7-7.8, being closer to physiological values of body fluids than general types of direct current-electrolytic hydrogen-rich water. We examined whether AC-electrolytic hydrogen-water is retained for hydrogen-abundance after boiling or for antioxidant abilities, and whether the oral administration of this water is clinically effective for diabetes and prevention against systemic DNA-oxidative injuries. 5,5-Dimethyl-1-pyrroline-N-oxide spin trapping and electron spin resonance revealed that the hydrogen-rich water generated by AC-electrolysis exhibited hydroxyl-radical-scavenging activities. Laser nanoparticle tracking method revealed that nanoparticle suspensions as abundant as 5.4 × 107/mL were efficiently retained (up to 3.5 × 107/mL) even after boiling for 10 minutes, being thermodynamically contrary to Henry's law. Oral intake of hydrogen-rich water, 1500 mL per day, lasted for 8 weeks in nine people with the diabetes-related serum markers beyond the normal ranges. The subjects exhibited significant tendencies for the decreased fasting blood glucose and fructosamine, and for the increased 1,5-anhydro-D-glucitol, concomitantly with significant decreases in urinary 8-hydroxy-2-deoxyguanosine contents and its rate of generation. Hydrogen-rich water prepared by AC-electrolysis may be effective in improving diverse diabetes-related markers and systemic DNA oxidative injuries through the formation of abundant heat-resistant nanobubbles and the increased hydrogen concentrations. The study protocol was officially approved by the Medical Ethics Committee of the Japanese Center for Anti-Aging Medical Sciences (approval No. 01S02) on September 15, 2009.

Keywords: DNA-oxidative injuries; alternating current-electrolysis; antioxidant activity; diabetes; hydrogen-rich water; reactive oxygen species.

PubMed Disclaimer

Conflict of interest statement

None

Figures

Figure 1
Figure 1
The principle of alternating current (AC) electrolysis for preparation of hydrogen-rich water. Note: (A) Generation of nanobubbles by AC electrolysis. The method used the Hayakawa Method (Patent No. for the Japan Patent Office: 5,435,894 2,615,308, 2,623,204). The high frequency switching circuit was selected within a range of 20–50 kHz and 10–50 V. (B) Polarization of water molecules and migration of protons towards the cathodal electrode interchanged at a cycle of 30 kHz in an AC-electrolysis tub.
Figure 2
Figure 2
Time courses in changes of various water-property parameters. Note: (A–D) The time course of DH (A), ORP (B), DO (C), and pH (D) values in hydrogen-rich water generated by alternating current-electrolysis of tap water. The pH values were stable between 7.7 and 7.9. Data were expressed as the means for three measurements. DH: Dissolved hydrogen; DO: dissolved oxygen; ORP: Oxidation-reduction potential.
Figure 3
Figure 3
Trace-metal elements content in hydrogen-rich water generated by alternating current-electrolysis of tap water for 30 minutes, as analyzed by inductively coupled plasma-mass spectrometry method. Note: Data are expressed as the means for three measurements.
Figure 4
Figure 4
Particle-size distributions in alternating current-electrolytically prepared hydrogen-rich water. Note: (A) Visualization of Brownian movement of nanoparticles by nanoparticle tracking analysis (NTA) using a laser beam tracing NanoSight LM20/NTA2.3 apparatus. (B) Size distribution (diameters versus numbers) of nanoparticles in hydrogen-rich water generated by alternating current-electrolysis of tap water for 30 minutes as measured by NTA. (C) Size distribution in hydrogen-rich water generated as in B and subjected to boiling and cooling. Nanoparticles after boiling were decreased to 1.9 × 107/mL, at a rate of 35.2%.
Figure 5
Figure 5
ESR spectra of superoxide anion radicals (•O2) and hydroxyl radicals (•OH) upon addition of alternating current-electrolytically prepared hydrogen-rich water. Note: (A, B) An ability of hydrogen-rich water to scavenge superoxide anion radicals, as evaluated by 5,5-dimethyl-1-pyrroline-N-oxide (DMPO)-spin trapping/electron spin resonance (ESR) method. (A) superoxide anion radicals generated by hypoxanthine-xanthine oxidase enzymatic reaction. (B) superoxide anion radicals immediately after addition of hydrogen-rich water that was freshly prepared by 20-minute AC-electrolysis. (C, D) An ability of hydrogen-rich water to scavenge hydroxyl radicals, as evaluated by DMPO-spin trapping/ESR method. (C) hydroxyl radicals generated by the Fenton reaction. (D) ESR spectrum of hydroxyl radicals immediately after addition of hydrogen-rich water that was freshly prepared by 20-minute AC-electrolysis.
Figure 6
Figure 6
Effect of alternating current-electrolyzed hydrogen-rich water on diabetes-related serum markers in nine subjects with higher blood sugar levels. Note: (A) 8-Hydroxydeoxyguanosine (8-OHdG) level in urine; (B) 8-OHdG/creatinine (Cre) in urine; (C) 8-OHdG formation per hour in urine; (D) fasting blood glucose; (E) 1,5-anhydro-D-glucitol (1,5-AG) in blood; (F) hemoglobin A1c (HbA1c); (G) fructosamine in blood. Data are expressed as mean, and analyzed by Wilcoxon signed-rank test. *P < 0.05.
Figure 7
Figure 7
Time schedule that can predict blood glucose level before measurement by measuring markers related to diabetes. Note: Hemoglobin A1c (HbA1c) levels, fructosamine levels, 1,5-anhydro-D-glucitol (1,5-AG) values, and fasting blood glucose levels were measured in the nine subjects who drank 1500 mL of hydrogen-rich water every day for 8 weeks, to trace their glycemic control.

References

    1. Asada R, Saitoh Y, Miwa N. Effects of hydrogen-rich water bath on visceral fat and skin blotch, with boiling-resistant hydrogen bubbles. Med Gas Res. 2019;9:68–73. - PMC - PubMed
    1. Kato S, Saitoh Y, Iwai K, Miwa N. Hydrogen-rich electrolyzed warm water represses wrinkle formation against UVA ray together with type-I collagen production and oxidative-stress diminishment in fibroblasts and cell-injury prevention in keratinocytes. J Photochem Photobiol B. 2012;106:24–33. - PubMed
    1. Kato S, Saitoh Y, Miwa N. Inhibitions by hydrogen-occluding silica microcluster to melanogenesis in human pigment cells and tyrosinase reaction. J Nanosci Nanotechnol. 2013;13:52–59. - PubMed
    1. Tanaka Y, Saitoh Y, Miwa N. Electrolytically generated hydrogen warm water cleanses the keratin-plug-clogged hair-pores and promotes the capillary blood-streams, more markedly than normal warm water does. Med Gas Res. 2018;8:12–18. - PMC - PubMed
    1. Xiao L, Miwa N. Hydrogen-rich water achieves cytoprotection from oxidative stress injury in human gingival fibroblasts in culture or 3D-tissue equivalents, and wound-healing promotion, together with ROS-scavenging and relief from glutathione diminishment. Hum Cell. 2017;30:72–87. - PubMed

Publication types

MeSH terms