Homoeologous Exchanges, Segmental Allopolyploidy, and Polyploid Genome Evolution
- PMID: 33005183
- PMCID: PMC7485112
- DOI: 10.3389/fgene.2020.01014
Homoeologous Exchanges, Segmental Allopolyploidy, and Polyploid Genome Evolution
Abstract
Polyploidy is a major force in plant evolution and speciation. In newly formed allopolyploids, pairing between related chromosomes from different subgenomes (homoeologous chromosomes) during meiosis is common. The initial stages of allopolyploid formation are characterized by a spectrum of saltational genomic and regulatory alterations that are responsible for evolutionary novelty. Here we highlight the possible effects and roles of recombination between homoeologous chromosomes during the early stages of allopolyploid stabilization. Homoeologous exchanges (HEs) have been reported in young allopolyploids from across the angiosperms. Although all lineages undergo karyotype change via chromosome rearrangements over time, the early generations after allopolyploid formation are predicted to show an accelerated rate of genomic change. HEs can also cause changes in allele dosage, genome-wide methylation patterns, and downstream phenotypes, and can hence be responsible for speciation and genome stabilization events. Additionally, we propose that fixation of duplication - deletion events resulting from HEs could lead to the production of genomes which appear to be a mix of autopolyploid and allopolyploid segments, sometimes termed "segmental allopolyploids." We discuss the implications of these findings for our understanding of the relationship between genome instability in novel polyploids and genome evolution.
Keywords: chromosome behavior; genome evolution; homoeologous exchanges; polyploidy; synthetics.
Copyright © 2020 Mason and Wendel.
Figures


Similar articles
-
Patterns, mechanisms, and consequences of homoeologous exchange in allopolyploid angiosperms: a genomic and epigenomic perspective.New Phytol. 2023 Jun;238(6):2284-2304. doi: 10.1111/nph.18927. Epub 2023 Apr 27. New Phytol. 2023. PMID: 37010081 Review.
-
Identification of all homoeologous chromosomes of newly synthetic allotetraploid Cucumis × hytivus and its wild parent reveals stable subgenome structure.Chromosoma. 2017 Dec;126(6):713-728. doi: 10.1007/s00412-017-0635-8. Epub 2017 Jul 7. Chromosoma. 2017. PMID: 28688040
-
Genomic mosaicism due to homoeologous exchange generates extensive phenotypic diversity in nascent allopolyploids.Natl Sci Rev. 2020 Nov 7;8(5):nwaa277. doi: 10.1093/nsr/nwaa277. eCollection 2021 May. Natl Sci Rev. 2020. PMID: 34691642 Free PMC article.
-
Chromosome pairing affinity and quadrivalent formation in polyploids: do segmental allopolyploids exist?Genome. 1996 Dec;39(6):1176-84. doi: 10.1139/g96-148. Genome. 1996. PMID: 18469964
-
Meiosis in Polyploids and Implications for Genetic Mapping: A Review.Genes (Basel). 2021 Sep 27;12(10):1517. doi: 10.3390/genes12101517. Genes (Basel). 2021. PMID: 34680912 Free PMC article. Review.
Cited by
-
Perspectives for integrated insect pest protection in oilseed rape breeding.Theor Appl Genet. 2022 Nov;135(11):3917-3946. doi: 10.1007/s00122-022-04074-3. Epub 2022 Mar 16. Theor Appl Genet. 2022. PMID: 35294574 Free PMC article. Review.
-
Analysis of 5S rDNA Genomic Organization Through the RepeatExplorer2 Pipeline: A Simplified Protocol.Methods Mol Biol. 2023;2672:501-512. doi: 10.1007/978-1-0716-3226-0_30. Methods Mol Biol. 2023. PMID: 37335496
-
Diploidization in a wild rice allopolyploid is both episodic and gradual.Proc Natl Acad Sci U S A. 2025 Jul;122(26):e2424854122. doi: 10.1073/pnas.2424854122. Epub 2025 Jun 26. Proc Natl Acad Sci U S A. 2025. PMID: 40569381 Free PMC article.
-
Extensive genome evolution distinguishes maize within a stable tribe of grasses.bioRxiv [Preprint]. 2025 Jan 24:2025.01.22.633974. doi: 10.1101/2025.01.22.633974. bioRxiv. 2025. PMID: 39896679 Free PMC article. Preprint.
-
Learning to tango with four (or more): the molecular basis of adaptation to polyploid meiosis.Plant Reprod. 2023 Mar;36(1):107-124. doi: 10.1007/s00497-022-00448-1. Epub 2022 Sep 23. Plant Reprod. 2023. PMID: 36149479 Free PMC article. Review.
References
-
- Abel S., Becker H. C. (2007). The effect of autopolyploidy on biomass production in homozygous lines of Brassica rapa and Brassica oleracea. Plant Breed. 126 642–643. 10.1111/j.1439-0523.2007.01405.x - DOI
-
- Ainouche M. L., Baumel A., Salmon A. (2004). Spartina anglica C. E. Hubbard: a natural model system for analysing early evolutionary changes that affect allopolyploid genomes. Biol. J. Linn. Soc. 82 475–484. 10.1111/j.1095-8312.2004.00334.x - DOI
-
- Ashton P. A., Abbott R. J. (1992). Multiple origins and genetic diversity in the newly arisen allopolyploid species, Senecio cambrensis Rosser (Compositae). Heredity 68 25–32. 10.1038/hdy.1992.3 - DOI
Publication types
LinkOut - more resources
Full Text Sources