Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Dec;41(12):3569-3577.
doi: 10.1007/s10072-020-04773-z. Epub 2020 Oct 1.

MicroRNAs in amyotrophic lateral sclerosis: from pathogenetic involvement to diagnostic biomarker and therapeutic agent development

Affiliations
Review

MicroRNAs in amyotrophic lateral sclerosis: from pathogenetic involvement to diagnostic biomarker and therapeutic agent development

Lin Wang et al. Neurol Sci. 2020 Dec.

Abstract

MicroRNAs (miRNAs) are a class of endogenous non-coding small single-stranded RNAs that are 21-25 nucleotides (NTs) in length and participate in post-transcriptional gene regulation. Studies have shown that miRNA dysfunction plays a critical role in the occurrence and development of a variety of nervous system diseases, including neurodegenerative diseases. Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with an unclear etiology and is characterized by the selective invasion of motor neurons in the brain and spinal cord. Symptoms can range from mild spasms in the limbs or medulla oblongata muscles to paralysis in almost all skeletal muscles. The role of miRNAs in the pathogenesis, diagnosis, and treatment of ALS has become of greater importance to those studying ALS. In this review, we reviewed experimentally confirmed miRNAs shown to be involved in the pathogenesis of ALS and that are used as diagnostic biomarkers or therapeutic ALS agents. At present, there are at least 20-30 genes clearly related to the pathogenesis of ALS. Multiple miRNAs have been reported in different pathogenic gene models. MiRNAs could be used as biomarkers for the diagnosis of ALS; the differential expression of some miRNAs could be related to ALS prognosis. As therapeutic agents, miRNAs are still in the exploratory stage. Although encouraging results have been achieved using animal models, much research is still needed before clinical trials can ensue. However, with additional miRNA studies in ALS patients and animal models, the pathogenesis, early diagnosis, and therapy of ALS should be elucidated.

Keywords: Amyotrophic lateral sclerosis; Biomarker; Diagnosis; Therapy; microRNAs.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Santa-Maria I, Alaniz ME, Renwick N, Cela C, Fulga TA, Van Vactor D, Tuschl T, Clark LN, Shelanski ML, McCabe BD, Crary JF (2015) Dysregulation of microRNA-219 promotes neurodegeneration through post-transcriptional regulation of tau. J Clin Invest 125(2):681–686. https://doi.org/10.1172/jci78421 - DOI - PubMed - PMC
    1. Su Y, Deng MF, Xiong W, Xie AJ, Guo J, Liang ZH, Hu B, Chen JG, Zhu X, Man HY, Lu Y, Liu D, Tang B, Zhu LQ (2019) MicroRNA-26a/death-associated protein kinase 1 signaling induces synucleinopathy and dopaminergic neuron degeneration in Parkinson’s disease. Biol Psychiatry 85(9):769–781. https://doi.org/10.1016/j.biopsych.2018.12.008 - DOI - PubMed
    1. Cheng L, Doecke JD, Sharples RA, Villemagne VL, Fowler CJ, Rembach A, Martins RN, Rowe CC, Macaulay SL, Masters CL, Hill AF (2015) Prognostic serum miRNA biomarkers associated with Alzheimer's disease shows concordance with neuropsychological and neuroimaging assessment. Mol Psychiatry 20(10):1188–1196. https://doi.org/10.1038/mp.2014.127 - DOI - PubMed
    1. Hoss AG, Lagomarsino VN, Frank S, Hadzi TC, Myers RH, Latourelle JC (2015) Study of plasma-derived miRNAs mimic differences in Huntington’s disease brain. Mov Disord 30(14):1961–1964. https://doi.org/10.1002/mds.26457 - DOI - PubMed - PMC
    1. El Fatimy R, Li S, Chen Z, Mushannen T, Gongala S, Wei Z, Balu DT, Rabinovsky R, Cantlon A, Elkhal A, Selkoe DJ, Sonntag KC, Walsh DM, Krichevsky AM (2018) MicroRNA-132 provides neuroprotection for tauopathies via multiple signaling pathways. Acta Neuropathol 136(4):537–555. https://doi.org/10.1007/s00401-018-1880-5 - DOI - PubMed - PMC

LinkOut - more resources