Identifying Carrier Behavior in Ultrathin Indirect-Bandgap CsPbX3 Nanocrystal Films for Use in UV/Visible-Blind High-Energy Detectors
- PMID: 33006244
- DOI: 10.1002/smll.202004513
Identifying Carrier Behavior in Ultrathin Indirect-Bandgap CsPbX3 Nanocrystal Films for Use in UV/Visible-Blind High-Energy Detectors
Abstract
High-energy radiation detectors such as X-ray detectors with low light photoresponse characteristics are used for several applications including, space, medical, and military devices. Here, an indirect bandgap inorganic perovskite-based X-ray detector is reported. The indirect bandgap nature of perovskite materials is revealed through optical characterizations, time-resolved photoluminescence (TRPL), and theoretical simulations, demonstrating that the differences in temperature-dependent carrier lifetime related to CsPbX3 (X = Br, I) perovskite composition are due to the changes in the bandgap structure. TRPL, theoretical analyses, and X-ray radiation measurements reveal that the high response of the UV/visible-blind yellow-phase CsPbI3 under high-energy X-ray exposure is attributed to the nature of the indirect bandgap structure of CsPbX3 . The yellow-phase CsPbI3 -based X-ray detector achieves a relatively high sensitivity of 83.6 μCGyair-1 cm-2 (under 1.7 mGyair s-1 at an electron field of 0.17 V μm-1 used for medical diagnostics) although the active layer is based solely on an ultrathin (≈6.6 μm) CsPbI3 nanocrystal film, exceeding the values obtained for commercial X-ray detectors, and further confirming good material quality. This CsPbX3 X-ray detector is sufficient for cost-effective device miniaturization based on a simple design.
Keywords: UV-vis blind devices; X-ray detectors; ab-initio electronic structure calculations; indirect bandgap perovskites; time-resolved spectroscopy (TRPL).
© 2020 Wiley-VCH GmbH.
Similar articles
-
Superior photoconversion efficiency of nanocrystal sensitized solar cells based on all-inorganic CsPbX3 (X = Br, I) perovskites.Nanoscale. 2025 May 2;17(17):10743-10751. doi: 10.1039/d4nr04752d. Nanoscale. 2025. PMID: 40190275
-
High-Performance X-ray Detection Based on One-Dimensional Inorganic Halide Perovskite CsPbI3.J Phys Chem Lett. 2020 Jan 16;11(2):432-437. doi: 10.1021/acs.jpclett.9b03523. Epub 2019 Dec 31. J Phys Chem Lett. 2020. PMID: 31885274
-
Crystal Phases and Thermal Stability of Co-evaporated CsPbX3 (X = I, Br) Thin Films.J Phys Chem Lett. 2018 Aug 16;9(16):4808-4813. doi: 10.1021/acs.jpclett.8b02059. Epub 2018 Aug 10. J Phys Chem Lett. 2018. PMID: 30084256
-
Perovskite-Based X-ray Detectors.Nanomaterials (Basel). 2023 Jul 7;13(13):2024. doi: 10.3390/nano13132024. Nanomaterials (Basel). 2023. PMID: 37446540 Free PMC article. Review.
-
Chemically Stable Black Phase CsPbI3 Inorganic Perovskites for High-Efficiency Photovoltaics.Adv Mater. 2020 Nov;32(45):e2001025. doi: 10.1002/adma.202001025. Epub 2020 Sep 22. Adv Mater. 2020. PMID: 32964519 Review.
Cited by
-
Physical properties of vacancy-ordered double perovskites K2TcZ6 (Z = Cl, Br) for spintronics applications: DFT calculations.RSC Adv. 2024 Jan 8;14(3):1822-1832. doi: 10.1039/d3ra07603b. eCollection 2024 Jan 3. RSC Adv. 2024. PMID: 38192306 Free PMC article.
-
Polymer-BiI3 composites for high-performance, room-temperature, direct X-ray detectors.MRS Commun. 2022;12(3):358-364. doi: 10.1557/s43579-022-00185-6. Epub 2022 Apr 22. MRS Commun. 2022. PMID: 35492383 Free PMC article.
References
-
- D. J. Brenner, E. J. Hall, N. Engl. J. Med. 2007, 357, 2277.
-
- B. Sinnott, E. Ron, A. B. Schneider, Endocr. Rev. 2010, 31, 756.
-
- M. Yaffe, J. Rowlands, Phys. Med. Biol. 1997, 42, 1.
-
- A. Sakdinawat, D. Attwood, Nat. Photonics 2010, 4, 840.
-
- S. O. Kasap, J. Phys. D: Appl. Phys. 2000, 33, 2853.
Publication types
LinkOut - more resources
Full Text Sources