Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Dec 15:206:111388.
doi: 10.1016/j.ecoenv.2020.111388. Epub 2020 Sep 29.

Low-dose combined exposure of carboxylated black carbon and heavy metal lead induced potentiation of oxidative stress, DNA damage, inflammation, and apoptosis in BEAS-2B cells

Affiliations
Free article

Low-dose combined exposure of carboxylated black carbon and heavy metal lead induced potentiation of oxidative stress, DNA damage, inflammation, and apoptosis in BEAS-2B cells

Nan Jiang et al. Ecotoxicol Environ Saf. .
Free article

Abstract

Black carbon (BC) and heavy metal lead (Pb), as typical components of atmospheric PM2.5, have been shown to cause a variety of adverse health effects. However, co-exposure to BC and Pb may induce pulmonary damage by aggravating toxicity via an unknown mechanism. This study aimed to investigate the combined toxicity of carboxylated black carbon (c-BC) and lead acetate (Pb) on human bronchial epithelial cells (BEAS-2B) at the no-observed-adverse-effect level (NOAEL). Cells were exposed to c-BC (6.25 μg/mL) and Pb (4 μg/mL) alone or their combination, and their combined toxicity was investigated by focusing on cell viability, oxidative stress, DNA damage, mitochondrial membrane potential (MMP), apoptosis, and cellular inflammation. Factorial analyses were also used to determine the potential interactions between c-BC and Pb. The results suggested that the combination of c-BC and Pb could significantly increase the production of reactive oxygen species (ROS), malondialdehyde (MDA), and lactate dehydrogenase leakage (LDH) and decrease the activities of glutathione (GSH) and superoxide dismutase (SOD). The excessive oxidative stress could increase the levels of inflammatory cytokine IL-6 and TNF-α, and induce oxidative DNA damage and dissipation of MMP. Moreover, the results also suggested that the combined group could enhance the cellular apoptotic rate and the activation of apoptotic markers like caspase-3, caspase-8, and caspase-9. The factorial analysis further demonstrated that synergistic interaction was responsible for the combined toxicity of c-BC and Pb co-exposure. Most noticeably, the co-exposure of c-BC and Pb could induce some unexpected toxicity, even beyond the known toxicities of the individual compounds in BEAS-2B cells at the NOAEL.

Keywords: Carboxylated back carbon; Combined toxicity; Human bronchial epithelial cells (BEAS-2B); Lead acetate; Oxidative stress; Synergistic effect.

PubMed Disclaimer

MeSH terms

LinkOut - more resources