Kinetic analysis of T7 RNA polymerase-promoter interactions with small synthetic promoters
- PMID: 3300768
- DOI: 10.1021/bi00384a006
Kinetic analysis of T7 RNA polymerase-promoter interactions with small synthetic promoters
Abstract
Specific interactions between T7 RNA polymerase and its promoter have been studied by a simple steady-state kinetic assay using synthetic oligonucleotide promoters that produce a short five-base message. A series of promoters with upstream lengths extending to promoter positions -19, -17, -14, and -12 show that promoters extending to -19 and -17 produce very specific transcripts with initiation rate constant Kcat = 50 min-1 and a Michaelis constant Km = 0.02 microM, indicating that the consensus sequence to position -17 is sufficient for maximum promoter usage. Shortening the upstream region of the promoter to -14 substantially increases Km (0.3 microM) but does not significantly reduce the maximum velocity (kcat = 30 min-1). Finally, truncation of the promoter at position -12 results in extremely low levels of specific transcription. The coding and noncoding strands appear to make different contributions to promoter recognition. Although the double-stranded promoter of upstream length -12 is very poor as a transcription template, extension of only the noncoding strand to -17 very significantly improves both Kcat and Km. In contrast, extension of only the coding strand results in no significant improvement. Substitution of an AT base pair at position -10 by CG (as found in T3 RNA polymerase promoters) produces a 10-fold increase in Km, with little effect on Kcat. Comparison of two promoters containing a base pair mismatch at this site (AG or CT) demonstrates that promoter recognition is very sensitive to the nature of the base on the noncoding strand and is only slightly affected by the presence of a mismatch created by a wrong base in the coding strands.(ABSTRACT TRUNCATED AT 250 WORDS)
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Other Literature Sources
Medical
Miscellaneous